Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments:  Powder, Colloidal Solution, and Zinc Ferrite−Silica Core−Shell Nanoparticles

Synthesis of nanoparticles under restricted environments offered by water-in-oil microemulsions provides excellent control over particle size and shape and interparticle spacing. These environments have been used in the synthesis of silica nanoparticles with a ZnFe2O4 magnetic core. First, aqueous m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2002-10, Vol.18 (21), p.8209-8216
Hauptverfasser: Grasset, F, Labhsetwar, N, Li, D, Park, D. C, Saito, N, Haneda, H, Cador, O, Roisnel, T, Mornet, S, Duguet, E, Portier, J, Etourneau, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of nanoparticles under restricted environments offered by water-in-oil microemulsions provides excellent control over particle size and shape and interparticle spacing. These environments have been used in the synthesis of silica nanoparticles with a ZnFe2O4 magnetic core. First, aqueous magnetic fluids constituted of zinc ferrite nanoparticles with a size ranging between 4 and 6 nm have been synthesized using a soft chemical approach. Chemical analysis has shown that the zinc ferrite nanoparticles are nonstoichiometric with the estimated formula Zn0.87Fe2.09X0.04O4 (X represents vacancies). The obtained silica nanoparticles (40−60 nm) with a zinc ferrite magnetic core (4−6 nm) have been characterized by X-ray diffraction, electron microscopy, and magnetization measurements. Preliminary magnetic measurements have inferred that the magnetic properties of these nanoparticles at low temperature are essentially governed by the interface particle−habitat.
ISSN:0743-7463
1520-5827
DOI:10.1021/la020322b