A note on Berge equilibrium

This work is a contribution on the problem of the existence of Berge equilibrium. Abalo and Kostreva give an existence theorem for this equilibrium that appears in the papers [K.Y. Abalo, M.M. Kostreva, Berge equilibrium: Some recent results from fixed-point theorems, Appl. Math. Comput. 169 (2005)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2007, Vol.20 (8)
Hauptverfasser: Nessah, R., Larbani, M., Tazdait, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is a contribution on the problem of the existence of Berge equilibrium. Abalo and Kostreva give an existence theorem for this equilibrium that appears in the papers [K.Y. Abalo, M.M. Kostreva, Berge equilibrium: Some recent results from fixed-point theorems, Appl. Math. Comput. 169 (2005) 624-638; K.Y. Abalo, M.M. Kostreva, Some existence theorems of Nash and Berge equilibria, Appl. Math. Lett. 17 (2004) 569-573]. We found that the assumptions of these theorems are not sufficient for the existence of Berge equilibrium. Indeed, we construct a game that verifies Abalo and Kostreva's assumptions, but has no Berge equilibrium. Then we provide a condition that overcomes the problem in these theorems. Our conclusion is also valid for Radjef's theorem, which is the basic reference for [K.Y. Abalo, M.M. Kostreva, Berge equilibrium: Some recent results from fixed-point theorems, Appl. Math. Comput. 169 (2005) 624-638; K.Y. Abalo, M.M. Kostreva, Some existence theorems of Nash and Berge equilibria, Appl. Math. Lett. 17 (2004) 569-573; K.Y. Abalo, M.M. Kostreva, Fixed points, Nash games and their organizations, Topol. Methods Nonlinear Anal. 8 (1996) 205-215; K.Y. Abalo, M.M. Kostreva, Equi-well-posed games, J. Optim. Theory Appl. 89 (1996) 89-99]. © 2007 Elsevier Ltd. All rights reserved.
ISSN:0893-9659
DOI:10.1016/j.aml.2006.09.005