On enrichment functions in the extended finite element method
SUMMARY This paper presents mathematical derivation of enrichment functions in the extended finite element method for numerical modeling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2012-07, Vol.91 (2), p.186-217 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
This paper presents mathematical derivation of enrichment functions in the extended finite element method for numerical modeling of strong and weak discontinuities. The proposed approach consists in combining the level set method with characteristic functions as well as domain decomposition and reproduction technique. We start with the simple case of a triangular linear element cut by one interface across which displacement field suffers a jump. The main steps towards the derivation of enrichment functions are as follows: (1) extension of the subfields separated by the interface to the whole element domain and definition of complementary nodal variables; (2) construction of characteristic functions for describing the geometry and physical field; (3) determination of the sets of basic nodal variables; (4) domain decompositions according to Step 3 and then reproduction of the physical field in terms of characteristic functions and nodal variables; and (5) comparison of the piecewise interpolations formulated at Steps 3 and 4 with the standard extended finite element method form, which yields enrichment functions. In this process, the physical meanings of both the basic and complementary nodal variables are clarified, which helps to impose Dirichlet boundary conditions. Enrichment functions for weak discontinuities are constructed from deeper insights into the structure of the functions for strong discontinuities. Relationships between the two classes of functions are naturally established. Improvements upon basic enrichment functions for weak discontinuities are performed so as to achieve satisfactory convergence and accuracy. From numerical viewpoints, a simple and efficient treatment on the issue of blending elements is also proposed with implementation details. For validation purposes, applications of the derived functions to heterogeneous problems with imperfect interfaces are presented. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.4272 |