Solubility of iron in the Southern Ocean
Iron solubility (cFeS) ranged from 0.4 to 1.5 nmol L−1, decreasing from south to north in three different Southern Ocean zones (the Coastal Zone, the Antarctic Zone, and the Polar Frontal Zone plus the Subantarctic Zone). This decrease was at times correlated with an increase in temperature. Organic...
Gespeichert in:
Veröffentlicht in: | Limnology and oceanography 2012-05, Vol.57 (3), p.684-697 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron solubility (cFeS) ranged from 0.4 to 1.5 nmol L−1, decreasing from south to north in three different Southern Ocean zones (the Coastal Zone, the Antarctic Zone, and the Polar Frontal Zone plus the Subantarctic Zone). This decrease was at times correlated with an increase in temperature. Organic Fe solubility (cFeS,org), which was obtained by subtracting from total measured Fe solubility the solubility of inorganic species of iron (Fe) at the measurement temperature (20°C), ranged from 0.3 to 1.3 nmol L−1, representing an average of 32 ± 14% of the concentration of ligands in the dissolved size fraction as determined via competitive ligand exchange–absorptive cathodic stripping voltammetry (barring a handful of extremely high values from a transect run to the east of Prydz Bay). Values of cFeS were mainly lower than the predicted value for inorganic Fe solubility at the in situ temperature. Total in situ Fe solubility (cFeS,adj) was therefore estimated by adjusting for inorganic Fe solubility at in situ temperatures (between −2°C and +18°C). Because in situ temperatures in the Antarctic Circumpolar Current were mostly lower than +3°C, such cFeS,adj values, ranging from 0.5 to 1.8 nmol L−1, were roughly twice as large as cFeS,org. The adjustment relies heavily on model calculations of inorganic Fe solubility but, if correct, indicates that the bulk of the solubility of Fe in the cold waters of the Southern Ocean is tied to the solubility of inorganic Fe rather than to Fe ligands in the soluble size fraction. |
---|---|
ISSN: | 0024-3590 1939-5590 |
DOI: | 10.4319/lo.2012.57.3.0684 |