Product quasi-interpolation method for weakly singular integral equation eigenvalue problem

A discrete method of accuracy O( h m ) is constructed to solve the integral equation eigenvalue problem λ ϕ ( x ) = ∫ − 1 1 K ( x , y ) ϕ ( y ) d y , where K( x, y) = log| x − y| or K( x, y) = | x − y| − α , 0 < α < 1, ϕ( x) being the eigenfunction associated with the eigenvalue λ. The method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation 2011, Vol.81 (10), p.2337-2345
Hauptverfasser: Sablonnière, P., Sbibih, D., Tahrichi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A discrete method of accuracy O( h m ) is constructed to solve the integral equation eigenvalue problem λ ϕ ( x ) = ∫ − 1 1 K ( x , y ) ϕ ( y ) d y , where K( x, y) = log| x − y| or K( x, y) = | x − y| − α , 0 < α < 1, ϕ( x) being the eigenfunction associated with the eigenvalue λ. The method is based first on improving the boundary behavior of the exact solution ϕ( x) with the help of a change of variables, and second on the product integration method based on a discrete spline quasi-interpolant (abbr. dQI) of order m.
ISSN:0378-4754
1872-7166
DOI:10.1016/j.matcom.2010.12.018