Product quasi-interpolation method for weakly singular integral equation eigenvalue problem
A discrete method of accuracy O( h m ) is constructed to solve the integral equation eigenvalue problem λ ϕ ( x ) = ∫ − 1 1 K ( x , y ) ϕ ( y ) d y , where K( x, y) = log| x − y| or K( x, y) = | x − y| − α , 0 < α < 1, ϕ( x) being the eigenfunction associated with the eigenvalue λ. The method...
Gespeichert in:
Veröffentlicht in: | Mathematics and computers in simulation 2011, Vol.81 (10), p.2337-2345 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A discrete method of accuracy
O(
h
m
) is constructed to solve the integral equation eigenvalue problem
λ
ϕ
(
x
)
=
∫
−
1
1
K
(
x
,
y
)
ϕ
(
y
)
d
y
,
where
K(
x,
y)
=
log|
x
−
y| or
K(
x,
y)
=
|
x
−
y|
−
α
, 0
<
α
<
1,
ϕ(
x) being the eigenfunction associated with the eigenvalue
λ. The method is based first on improving the boundary behavior of the exact solution
ϕ(
x) with the help of a change of variables, and second on the product integration method based on a discrete spline quasi-interpolant (abbr. dQI) of order
m. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/j.matcom.2010.12.018 |