Nonfattening condition for the generalized evolution by mean curvature and applications
We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curv...
Gespeichert in:
Veröffentlicht in: | Interfaces and free boundaries 2008-01, Vol.10 (1), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Interfaces and free boundaries |
container_volume | 10 |
creator | Biton, Samuel Cardaliaguet, Pierre Ley, Olivier |
description | We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion. |
doi_str_mv | 10.4171/IFB/177 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00701207v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00701207v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-27b8ad5ecca769622d8320f0e6430a6d0f4ebbc3a8d196aaee4f9aa0234363d43</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_oWAB_GwNtnEZPdYi7WFohfFY5jNR5uyTUp2t1B_vdtWesqQeWZgXoTuKXnmVNLRfPo6olJeoAHlgmVlKenluRbsGt00zZoQUlLCBujnIwYHbWuDD0usYzC-9TFgFxNuVxYvbbAJav9rDba7WHfHbrXHGwsB6y7toO2SxRAMhu229hoOorlFVw7qxt79v0P0PX37msyyxef7fDJeZJrxos1yWRVgXqzWIEUp8twULCeOWMEZAWGI47aqNIPC0FIAWMtdCUByxplghrMhejrtXUGttslvIO1VBK9m44U6_BEiCc2J3NHePp6sTrFpknXnAUrUITvlXaX67Hr5cJJ206h17FLobzirPuGj-gPMc228</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><source>European Mathematical Society Publishing House</source><creator>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</creator><creatorcontrib>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</creatorcontrib><description>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/177</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Biology and other natural sciences ; Fluid mechanics ; Mathematics ; Numerical analysis ; Optimization and Control ; Partial differential equations</subject><ispartof>Interfaces and free boundaries, 2008-01, Vol.10 (1), p.1-4</ispartof><rights>European Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-4579-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,24052,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00701207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biton, Samuel</creatorcontrib><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Ley, Olivier</creatorcontrib><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><title>Interfaces and free boundaries</title><addtitle>Interfaces Free Bound</addtitle><description>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</description><subject>Biology and other natural sciences</subject><subject>Fluid mechanics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Optimization and Control</subject><subject>Partial differential equations</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgCtYq_oWAB_GwNtnEZPdYi7WFohfFY5jNR5uyTUp2t1B_vdtWesqQeWZgXoTuKXnmVNLRfPo6olJeoAHlgmVlKenluRbsGt00zZoQUlLCBujnIwYHbWuDD0usYzC-9TFgFxNuVxYvbbAJav9rDba7WHfHbrXHGwsB6y7toO2SxRAMhu229hoOorlFVw7qxt79v0P0PX37msyyxef7fDJeZJrxos1yWRVgXqzWIEUp8twULCeOWMEZAWGI47aqNIPC0FIAWMtdCUByxplghrMhejrtXUGttslvIO1VBK9m44U6_BEiCc2J3NHePp6sTrFpknXnAUrUITvlXaX67Hr5cJJ206h17FLobzirPuGj-gPMc228</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Biton, Samuel</creator><creator>Cardaliaguet, Pierre</creator><creator>Ley, Olivier</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0000-4579-3698</orcidid></search><sort><creationdate>20080101</creationdate><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><author>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-27b8ad5ecca769622d8320f0e6430a6d0f4ebbc3a8d196aaee4f9aa0234363d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biology and other natural sciences</topic><topic>Fluid mechanics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Optimization and Control</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biton, Samuel</creatorcontrib><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Ley, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biton, Samuel</au><au>Cardaliaguet, Pierre</au><au>Ley, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonfattening condition for the generalized evolution by mean curvature and applications</atitle><jtitle>Interfaces and free boundaries</jtitle><addtitle>Interfaces Free Bound</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/177</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0000-4579-3698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9963 |
ispartof | Interfaces and free boundaries, 2008-01, Vol.10 (1), p.1-4 |
issn | 1463-9963 1463-9971 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00701207v1 |
source | European Mathematical Society Publishing House |
subjects | Biology and other natural sciences Fluid mechanics Mathematics Numerical analysis Optimization and Control Partial differential equations |
title | Nonfattening condition for the generalized evolution by mean curvature and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonfattening%20condition%20for%20the%20generalized%20evolution%20by%20mean%20curvature%20and%20applications&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Biton,%20Samuel&rft.date=2008-01-01&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/177&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00701207v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |