Nonfattening condition for the generalized evolution by mean curvature and applications

We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2008-01, Vol.10 (1), p.1-4
Hauptverfasser: Biton, Samuel, Cardaliaguet, Pierre, Ley, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 1
container_start_page 1
container_title Interfaces and free boundaries
container_volume 10
creator Biton, Samuel
Cardaliaguet, Pierre
Ley, Olivier
description We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.
doi_str_mv 10.4171/IFB/177
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00701207v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00701207v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-27b8ad5ecca769622d8320f0e6430a6d0f4ebbc3a8d196aaee4f9aa0234363d43</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_oWAB_GwNtnEZPdYi7WFohfFY5jNR5uyTUp2t1B_vdtWesqQeWZgXoTuKXnmVNLRfPo6olJeoAHlgmVlKenluRbsGt00zZoQUlLCBujnIwYHbWuDD0usYzC-9TFgFxNuVxYvbbAJav9rDba7WHfHbrXHGwsB6y7toO2SxRAMhu229hoOorlFVw7qxt79v0P0PX37msyyxef7fDJeZJrxos1yWRVgXqzWIEUp8twULCeOWMEZAWGI47aqNIPC0FIAWMtdCUByxplghrMhejrtXUGttslvIO1VBK9m44U6_BEiCc2J3NHePp6sTrFpknXnAUrUITvlXaX67Hr5cJJ206h17FLobzirPuGj-gPMc228</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><source>European Mathematical Society Publishing House</source><creator>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</creator><creatorcontrib>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</creatorcontrib><description>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</description><identifier>ISSN: 1463-9963</identifier><identifier>EISSN: 1463-9971</identifier><identifier>DOI: 10.4171/IFB/177</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Biology and other natural sciences ; Fluid mechanics ; Mathematics ; Numerical analysis ; Optimization and Control ; Partial differential equations</subject><ispartof>Interfaces and free boundaries, 2008-01, Vol.10 (1), p.1-4</ispartof><rights>European Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-4579-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,24052,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00701207$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biton, Samuel</creatorcontrib><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Ley, Olivier</creatorcontrib><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><title>Interfaces and free boundaries</title><addtitle>Interfaces Free Bound</addtitle><description>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</description><subject>Biology and other natural sciences</subject><subject>Fluid mechanics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Optimization and Control</subject><subject>Partial differential equations</subject><issn>1463-9963</issn><issn>1463-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEQBuAgCtYq_oWAB_GwNtnEZPdYi7WFohfFY5jNR5uyTUp2t1B_vdtWesqQeWZgXoTuKXnmVNLRfPo6olJeoAHlgmVlKenluRbsGt00zZoQUlLCBujnIwYHbWuDD0usYzC-9TFgFxNuVxYvbbAJav9rDba7WHfHbrXHGwsB6y7toO2SxRAMhu229hoOorlFVw7qxt79v0P0PX37msyyxef7fDJeZJrxos1yWRVgXqzWIEUp8twULCeOWMEZAWGI47aqNIPC0FIAWMtdCUByxplghrMhejrtXUGttslvIO1VBK9m44U6_BEiCc2J3NHePp6sTrFpknXnAUrUITvlXaX67Hr5cJJ206h17FLobzirPuGj-gPMc228</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Biton, Samuel</creator><creator>Cardaliaguet, Pierre</creator><creator>Ley, Olivier</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0000-4579-3698</orcidid></search><sort><creationdate>20080101</creationdate><title>Nonfattening condition for the generalized evolution by mean curvature and applications</title><author>Biton, Samuel ; Cardaliaguet, Pierre ; Ley, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-27b8ad5ecca769622d8320f0e6430a6d0f4ebbc3a8d196aaee4f9aa0234363d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biology and other natural sciences</topic><topic>Fluid mechanics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Optimization and Control</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biton, Samuel</creatorcontrib><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Ley, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Interfaces and free boundaries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biton, Samuel</au><au>Cardaliaguet, Pierre</au><au>Ley, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonfattening condition for the generalized evolution by mean curvature and applications</atitle><jtitle>Interfaces and free boundaries</jtitle><addtitle>Interfaces Free Bound</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1463-9963</issn><eissn>1463-9971</eissn><abstract>We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/IFB/177</doi><tpages>4</tpages><orcidid>https://orcid.org/0009-0000-4579-3698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9963
ispartof Interfaces and free boundaries, 2008-01, Vol.10 (1), p.1-4
issn 1463-9963
1463-9971
language eng
recordid cdi_hal_primary_oai_HAL_hal_00701207v1
source European Mathematical Society Publishing House
subjects Biology and other natural sciences
Fluid mechanics
Mathematics
Numerical analysis
Optimization and Control
Partial differential equations
title Nonfattening condition for the generalized evolution by mean curvature and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonfattening%20condition%20for%20the%20generalized%20evolution%20by%20mean%20curvature%20and%20applications&rft.jtitle=Interfaces%20and%20free%20boundaries&rft.au=Biton,%20Samuel&rft.date=2008-01-01&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1463-9963&rft.eissn=1463-9971&rft_id=info:doi/10.4171/IFB/177&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00701207v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true