Nonfattening condition for the generalized evolution by mean curvature and applications

We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces and free boundaries 2008-01, Vol.10 (1), p.1-4
Hauptverfasser: Biton, Samuel, Cardaliaguet, Pierre, Ley, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a non fattening condition for a geometric evolution described by the level set approach. This condition is close to those of Soner \cite{soner93} and Barles, Soner and Souganidis \cite{bss93} but we apply it to some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for graphs with convex at infinity initial data, without any restriction on its growth at infinity, by seeing the evolution of the graph of a solution as a geometric motion.
ISSN:1463-9963
1463-9971
DOI:10.4171/IFB/177