On a heated incompressible magnetic fluid model

In this paper we study the equations describing the dynamics of heat transfer in an incompressible magnetic fluid under the action of an applied magnetic field. The system consists of the Navier-Stokes equations, the magnetostatic equations and the temperature equation. We prove global-in-time exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied analysis 2012-03, Vol.11 (2), p.675-696
Hauptverfasser: Amirat, Youcef, Hamdache, Kamel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the equations describing the dynamics of heat transfer in an incompressible magnetic fluid under the action of an applied magnetic field. The system consists of the Navier-Stokes equations, the magnetostatic equations and the temperature equation. We prove global-in-time existence of weak solutions to the system posed in a bounded domain of $R^3$ and equipped with initial and boundary conditions. The main difficulty comes from the singularity of the term representing the Kelvin force due to magnetization.
ISSN:1553-5258
0010-3640
1097-0312
DOI:10.3934/cpaa.2012.11.675