On a heated incompressible magnetic fluid model
In this paper we study the equations describing the dynamics of heat transfer in an incompressible magnetic fluid under the action of an applied magnetic field. The system consists of the Navier-Stokes equations, the magnetostatic equations and the temperature equation. We prove global-in-time exist...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied analysis 2012-03, Vol.11 (2), p.675-696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the equations describing the dynamics of heat transfer in an incompressible magnetic fluid under the action of an applied magnetic field. The system consists of the Navier-Stokes equations, the magnetostatic equations and the temperature equation. We prove global-in-time existence of weak solutions to the system posed in a bounded domain
of $R^3$ and equipped with initial and boundary conditions.
The main difficulty comes from the singularity of the term representing
the Kelvin force due to magnetization. |
---|---|
ISSN: | 1553-5258 0010-3640 1097-0312 |
DOI: | 10.3934/cpaa.2012.11.675 |