Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires
[Display omitted] ► Hybrid solar cells based on silicon nanowires have been fabricated. ► The relation between the morphology of the composite thin films and the charge transfer between the polymer matrices and SiNWs has been examined. ► We have investigated the effect of the polymer matrix on the p...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2012-02, Vol.177 (2), p.173-179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► Hybrid solar cells based on silicon nanowires have been fabricated. ► The relation between the morphology of the composite thin films and the charge transfer between the polymer matrices and SiNWs has been examined. ► We have investigated the effect of the polymer matrix on the photovoltaic characteristics.
Poly (N-vinylcarbazole) (PVK):SiNWs and poly (2-methoxy, 5-(2-ethyl-hexyloxy)-p-phenyl vinylene) (MEH-PPV):SiNWs bulk-heterojunctions (BHJ) have been elaborated from blends of SiNWs and the polymer in solution from a common solvent. Optical properties of these nanocomposites have been investigated by UV–vis absorption and photoluminescence (PL) spectral measurements. We have studied the charge transfer between SiNWs and the two polymers using the photoluminescence quenching of PVK and MEH-PPV which is a convenient signature of the reduced radiative recombination of the generated charge pairs upon exciton dissociation. We found that PVK and SiNWs constitutes the better donor–acceptor system. In order to understand the difference between PVK:SiNWs or MEH-PPV:SiNWs behaviours, photoluminescence responses were correlated with the topography (SEM) of the thin films. The photovoltaic effect of ITO/PEDOT:PSS/SiNWs:PVK/Al and ITO/PEDOT:PSS/SiNWs:MEH-PPV/Al structures was studied by current–voltage (
I–
V) measurements in dark and under illumination and interpreted on the basis of the charge transfer differences resulting from the morphologies. |
---|---|
ISSN: | 0921-5107 1873-4944 |
DOI: | 10.1016/j.mseb.2011.10.004 |