An almost Schur theorem on 4-dimensional manifolds

In this short paper we prove that the almsost Schur theorem, introduced by De Lellis and Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar curvature and discuss some related problems on other dimensional manifolds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2012-03, Vol.140 (3), p.1041-1044
Hauptverfasser: GE, YUXIN, WANG, GUOFANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this short paper we prove that the almsost Schur theorem, introduced by De Lellis and Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar curvature and discuss some related problems on other dimensional manifolds.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-2011-11065-7