An almost Schur theorem on 4-dimensional manifolds
In this short paper we prove that the almsost Schur theorem, introduced by De Lellis and Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar curvature and discuss some related problems on other dimensional manifolds.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2012-03, Vol.140 (3), p.1041-1044 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this short paper we prove that the almsost Schur theorem, introduced by De Lellis and Topping, is true on 4-dimensional Riemannian manifolds of nonnegative scalar curvature and discuss some related problems on other dimensional manifolds. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-2011-11065-7 |