Particle shape dependence in 2D granular media

Particle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter η describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and non-convexity, η is a low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2012-05, Vol.98 (4), p.44008
Hauptverfasser: Saint-Cyr, B., Szarf, K., Voivret, C., Azéma, E., Richefeu, V., Delenne, J.-Y., Combe, G., Nouguier-Lehon, C., Villard, P., Sornay, P., Chaze, M., Radjai, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter η describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and non-convexity, η is a low-order but generic parameter that we used in a numerical benchmark test for a systematic investigation of shape dependence in sheared granular packings composed of particles of different shapes. We find that the shear strength is an increasing function of η with nearly the same trend for all shapes, the differences appearing thus to be of second order compared to η. We also observe a non-trivial behavior of packing fraction which, for all our simulated shapes, increases with η from the random close packing fraction for disks, reaches a peak considerably higher than that for disks, and subsequently declines as η is further increased. These findings suggest that a low-order description of particle shape accounts for the principal trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters may be investigated by considering different shapes at the same level of η.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/98/44008