Rank 2 affine MV polytopes
We give a realization of the crystal B(-\infty ) \widehat {\mathrm {sl}}_2 B(-\infty ) involution. The polygons we use have combinatorial properties suggesting they are the \widehat {\mathrm {sl}}_2, the other rank 2 affine Kac-Moody algebra.
Gespeichert in:
Veröffentlicht in: | Representation theory 2013-08, Vol.17 (15), p.442-468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 15 |
container_start_page | 442 |
container_title | Representation theory |
container_volume | 17 |
creator | Baumann, Pierre Dunlap, Thomas Kamnitzer, Joel Tingley, Peter |
description | We give a realization of the crystal B(-\infty ) \widehat {\mathrm {sl}}_2 B(-\infty ) involution. The polygons we use have combinatorial properties suggesting they are the \widehat {\mathrm {sl}}_2, the other rank 2 affine Kac-Moody algebra. |
doi_str_mv | 10.1090/S1088-4165-2013-00438-7 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00682738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00682738v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-510be5c2fc1d71d426b05b88b32f2b78de83844f6b4654038098570c1d9151763</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_gBdz9bA6sx_ZybEUbYWK4Nd12SS7GE2bkC1C_71JI8Wjpxlm3mdgHsauEG4QMrh9QSDiClPNBaDkAEoSN0dsclgc_-lP2VmMnwCIRpsJu3x2m69EJC6EauOTx_ekberdtml9PGcnwdXRX_zWKXu7v3udL_nqafEwn624kyS3XCPkXhciFFgaLJVIc9A5US5FELmh0pMkpUKaq1QrkAQZaQN9OkONJpVTdj3e_XC1bbtq7bqdbVxll7OVHWYAKQkj6Rv7rBmzRdfE2PlwABDsoMPuddjhUzvosHsd1vSkGEm3jv-GfgDNXl09</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rank 2 affine MV polytopes</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baumann, Pierre ; Dunlap, Thomas ; Kamnitzer, Joel ; Tingley, Peter</creator><creatorcontrib>Baumann, Pierre ; Dunlap, Thomas ; Kamnitzer, Joel ; Tingley, Peter</creatorcontrib><description>We give a realization of the crystal B(-\infty ) \widehat {\mathrm {sl}}_2 B(-\infty ) involution. The polygons we use have combinatorial properties suggesting they are the \widehat {\mathrm {sl}}_2, the other rank 2 affine Kac-Moody algebra.</description><identifier>ISSN: 1088-4165</identifier><identifier>EISSN: 1088-4165</identifier><identifier>DOI: 10.1090/S1088-4165-2013-00438-7</identifier><language>eng</language><publisher>Amercian Mathematical Society</publisher><subject>Combinatorics ; Mathematics ; Quantum Algebra</subject><ispartof>Representation theory, 2013-08, Vol.17 (15), p.442-468</ispartof><rights>Copyright 2013, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-510be5c2fc1d71d426b05b88b32f2b78de83844f6b4654038098570c1d9151763</citedby><cites>FETCH-LOGICAL-a383t-510be5c2fc1d71d426b05b88b32f2b78de83844f6b4654038098570c1d9151763</cites><orcidid>0000-0002-6947-0778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S1088-4165-2013-00438-7S1088-4165-2013-00438-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S1088-4165-2013-00438-7$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,780,784,885,23322,23326,27922,27923,77606,77608,77616,77618</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00682738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baumann, Pierre</creatorcontrib><creatorcontrib>Dunlap, Thomas</creatorcontrib><creatorcontrib>Kamnitzer, Joel</creatorcontrib><creatorcontrib>Tingley, Peter</creatorcontrib><title>Rank 2 affine MV polytopes</title><title>Representation theory</title><description>We give a realization of the crystal B(-\infty ) \widehat {\mathrm {sl}}_2 B(-\infty ) involution. The polygons we use have combinatorial properties suggesting they are the \widehat {\mathrm {sl}}_2, the other rank 2 affine Kac-Moody algebra.</description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Quantum Algebra</subject><issn>1088-4165</issn><issn>1088-4165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_gBdz9bA6sx_ZybEUbYWK4Nd12SS7GE2bkC1C_71JI8Wjpxlm3mdgHsauEG4QMrh9QSDiClPNBaDkAEoSN0dsclgc_-lP2VmMnwCIRpsJu3x2m69EJC6EauOTx_ekberdtml9PGcnwdXRX_zWKXu7v3udL_nqafEwn624kyS3XCPkXhciFFgaLJVIc9A5US5FELmh0pMkpUKaq1QrkAQZaQN9OkONJpVTdj3e_XC1bbtq7bqdbVxll7OVHWYAKQkj6Rv7rBmzRdfE2PlwABDsoMPuddjhUzvosHsd1vSkGEm3jv-GfgDNXl09</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Baumann, Pierre</creator><creator>Dunlap, Thomas</creator><creator>Kamnitzer, Joel</creator><creator>Tingley, Peter</creator><general>Amercian Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6947-0778</orcidid></search><sort><creationdate>20130805</creationdate><title>Rank 2 affine MV polytopes</title><author>Baumann, Pierre ; Dunlap, Thomas ; Kamnitzer, Joel ; Tingley, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-510be5c2fc1d71d426b05b88b32f2b78de83844f6b4654038098570c1d9151763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Quantum Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baumann, Pierre</creatorcontrib><creatorcontrib>Dunlap, Thomas</creatorcontrib><creatorcontrib>Kamnitzer, Joel</creatorcontrib><creatorcontrib>Tingley, Peter</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baumann, Pierre</au><au>Dunlap, Thomas</au><au>Kamnitzer, Joel</au><au>Tingley, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank 2 affine MV polytopes</atitle><jtitle>Representation theory</jtitle><date>2013-08-05</date><risdate>2013</risdate><volume>17</volume><issue>15</issue><spage>442</spage><epage>468</epage><pages>442-468</pages><issn>1088-4165</issn><eissn>1088-4165</eissn><abstract>We give a realization of the crystal B(-\infty ) \widehat {\mathrm {sl}}_2 B(-\infty ) involution. The polygons we use have combinatorial properties suggesting they are the \widehat {\mathrm {sl}}_2, the other rank 2 affine Kac-Moody algebra.</abstract><pub>Amercian Mathematical Society</pub><doi>10.1090/S1088-4165-2013-00438-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-6947-0778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-4165 |
ispartof | Representation theory, 2013-08, Vol.17 (15), p.442-468 |
issn | 1088-4165 1088-4165 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00682738v1 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | Combinatorics Mathematics Quantum Algebra |
title | Rank 2 affine MV polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%202%20affine%20MV%20polytopes&rft.jtitle=Representation%20theory&rft.au=Baumann,%20Pierre&rft.date=2013-08-05&rft.volume=17&rft.issue=15&rft.spage=442&rft.epage=468&rft.pages=442-468&rft.issn=1088-4165&rft.eissn=1088-4165&rft_id=info:doi/10.1090/S1088-4165-2013-00438-7&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00682738v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |