Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering
Five types of solid and porous polyurethane composites containing 5–20 wt.% of Bioglass® inclusions were synthesized. Porous structures were fabricated by polymer coagulation combined with the salt-particle leaching method. In-vitro bioactivity tests in simulated body fluid (SBF) were carried out an...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2010-11, Vol.70 (13), p.1894-1908 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Five types of solid and porous polyurethane composites containing 5–20 wt.% of Bioglass® inclusions were synthesized. Porous structures were fabricated by polymer coagulation combined with the salt-particle leaching method. In-vitro bioactivity tests in simulated body fluid (SBF) were carried out and the marker of bioactivity, e.g. formation of surface hydroxyapatite or calcium phosphate layers upon immersion in SBF, was investigated. The chemical and physical properties of the solid and porous composites before and after immersion in SBF were evaluated using different techniques: Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA). Moreover the surface structure and microstructure of the composites was characterised by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM), respectively. Mercury intrusion porosimetry, SEM and microtomography (μCT) were used to determine pore size distribution and porosity. The fabricated foams exhibited porosity >70% with open pores of 100–400μm in size and pore walls containing numerous micropores of |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2010.05.011 |