Logic control law design for automated manufacturing systems
To respond rapidly to the highly volatile market, the reconfigurable manufacturing systems (RMS) have brought forward challenging issues. First of all there is a need to build a formal model of a manufacturing configuration. Second it has to be rather easy to derive the models associated to the manu...
Gespeichert in:
Veröffentlicht in: | Engineering applications of artificial intelligence 2012-06, Vol.25 (4), p.824-836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To respond rapidly to the highly volatile market, the reconfigurable manufacturing systems (RMS) have brought forward challenging issues. First of all there is a need to build a formal model of a manufacturing configuration. Second it has to be rather easy to derive the models associated to the manufacturing configuration changes (reconfiguration) from such an initial model. An off-line method of rapid design of an optimal logic control law (configuration) based on Petri net (PN) is presented in this paper. From a controlled system modeling point of view, the main characteristics of the level 1 of the CIM architecture are depicted. Subsequently, the formal tool used in the automated planning field is extended to provide a controlled system model. The concept of operation is structured in order to introduce the behavioral properties of the operations. A four-step method is then proposed to design a logic control law that satisfies several goals: reduction of the lead time, satisfaction of the work orders objectives, minimization of the time cycle. Finally, the proposed design method is illustrated on a manufacturing cell. |
---|---|
ISSN: | 0952-1976 1873-6769 |
DOI: | 10.1016/j.engappai.2012.01.005 |