Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem
This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently...
Gespeichert in:
Veröffentlicht in: | Langmuir 2012-01, Vol.28 (1), p.1041-1048 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1048 |
---|---|
container_issue | 1 |
container_start_page | 1041 |
container_title | Langmuir |
container_volume | 28 |
creator | Theisen, Johannes Davoust, Laurent |
description | This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices. |
doi_str_mv | 10.1021/la203645t |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00675001v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915380757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgaBcBl4AeUGIIeBLHCdsFS0XqYgFZuvgOsXIjYPtFPXtSdXSLkyWjj79x-dH6JySG0oYvXXACC9ykfbQgApGMlEyuY8GROY8k3nBj9BxjF-EkIrn1SE6YoyInFRygPSoA5c9BPPdmUYv8dgZnYL_MSnZZnaHh23rrIZkfYOTx6PgWzxeQOvDevYI3ayH-MemT9tgwCM7swkcfrE6-LiMycxP0UENLpqzzXuC3h_Gb_dP2eT18fl-OMmAyzJlJa-oqLSeagGiliWFqdSQA6egKfuYMsYLVkHFODd1bTijdVnURhomS53zip-g63XuJzjVBjuHsFQerHoaTtRqRkghBSF0QXt7tbZt8P3pMam5jdo4B43xXVT9V3hJpJC71NU9MZh6G02JWtWvtvX39mKT2n3MzXQr__ruweUGQNTg6gCNtnHnhKCSs2LnQEf15bvQ9MX9s_AXkMSYlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915380757</pqid></control><display><type>article</type><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Theisen, Johannes ; Davoust, Laurent</creator><creatorcontrib>Theisen, Johannes ; Davoust, Laurent</creatorcontrib><description>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la203645t</identifier><identifier>PMID: 22054097</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemical Sciences ; Chemistry ; Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Material chemistry ; Solid-liquid interface ; Surface physical chemistry ; Wettability</subject><ispartof>Langmuir, 2012-01, Vol.28 (1), p.1041-1048</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</citedby><cites>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</cites><orcidid>0000-0001-9544-1578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la203645t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la203645t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25517326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22054097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00675001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Theisen, Johannes</creatorcontrib><creatorcontrib>Davoust, Laurent</creatorcontrib><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Material chemistry</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Wettability</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LtOwzAUBmALgaBcBl4AeUGIIeBLHCdsFS0XqYgFZuvgOsXIjYPtFPXtSdXSLkyWjj79x-dH6JySG0oYvXXACC9ykfbQgApGMlEyuY8GROY8k3nBj9BxjF-EkIrn1SE6YoyInFRygPSoA5c9BPPdmUYv8dgZnYL_MSnZZnaHh23rrIZkfYOTx6PgWzxeQOvDevYI3ayH-MemT9tgwCM7swkcfrE6-LiMycxP0UENLpqzzXuC3h_Gb_dP2eT18fl-OMmAyzJlJa-oqLSeagGiliWFqdSQA6egKfuYMsYLVkHFODd1bTijdVnURhomS53zip-g63XuJzjVBjuHsFQerHoaTtRqRkghBSF0QXt7tbZt8P3pMam5jdo4B43xXVT9V3hJpJC71NU9MZh6G02JWtWvtvX39mKT2n3MzXQr__ruweUGQNTg6gCNtnHnhKCSs2LnQEf15bvQ9MX9s_AXkMSYlA</recordid><startdate>20120110</startdate><enddate>20120110</enddate><creator>Theisen, Johannes</creator><creator>Davoust, Laurent</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9544-1578</orcidid></search><sort><creationdate>20120110</creationdate><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><author>Theisen, Johannes ; Davoust, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Material chemistry</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theisen, Johannes</creatorcontrib><creatorcontrib>Davoust, Laurent</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theisen, Johannes</au><au>Davoust, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-01-10</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>1041</spage><epage>1048</epage><pages>1041-1048</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22054097</pmid><doi>10.1021/la203645t</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9544-1578</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2012-01, Vol.28 (1), p.1041-1048 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00675001v1 |
source | MEDLINE; American Chemical Society Journals |
subjects | Chemical Sciences Chemistry Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals Electrochemistry Exact sciences and technology General and physical chemistry Material chemistry Solid-liquid interface Surface physical chemistry Wettability |
title | Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Frequency%20Electrowetting:%20Application%20to%20Drop%20Evaporation%20Gauging%20within%20a%20Digital%20Microsystem&rft.jtitle=Langmuir&rft.au=Theisen,%20Johannes&rft.date=2012-01-10&rft.volume=28&rft.issue=1&rft.spage=1041&rft.epage=1048&rft.pages=1041-1048&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la203645t&rft_dat=%3Cproquest_hal_p%3E915380757%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915380757&rft_id=info:pmid/22054097&rfr_iscdi=true |