Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem

This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-01, Vol.28 (1), p.1041-1048
Hauptverfasser: Theisen, Johannes, Davoust, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1048
container_issue 1
container_start_page 1041
container_title Langmuir
container_volume 28
creator Theisen, Johannes
Davoust, Laurent
description This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.
doi_str_mv 10.1021/la203645t
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00675001v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>915380757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</originalsourceid><addsrcrecordid>eNpt0LtOwzAUBmALgaBcBl4AeUGIIeBLHCdsFS0XqYgFZuvgOsXIjYPtFPXtSdXSLkyWjj79x-dH6JySG0oYvXXACC9ykfbQgApGMlEyuY8GROY8k3nBj9BxjF-EkIrn1SE6YoyInFRygPSoA5c9BPPdmUYv8dgZnYL_MSnZZnaHh23rrIZkfYOTx6PgWzxeQOvDevYI3ayH-MemT9tgwCM7swkcfrE6-LiMycxP0UENLpqzzXuC3h_Gb_dP2eT18fl-OMmAyzJlJa-oqLSeagGiliWFqdSQA6egKfuYMsYLVkHFODd1bTijdVnURhomS53zip-g63XuJzjVBjuHsFQerHoaTtRqRkghBSF0QXt7tbZt8P3pMam5jdo4B43xXVT9V3hJpJC71NU9MZh6G02JWtWvtvX39mKT2n3MzXQr__ruweUGQNTg6gCNtnHnhKCSs2LnQEf15bvQ9MX9s_AXkMSYlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915380757</pqid></control><display><type>article</type><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Theisen, Johannes ; Davoust, Laurent</creator><creatorcontrib>Theisen, Johannes ; Davoust, Laurent</creatorcontrib><description>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la203645t</identifier><identifier>PMID: 22054097</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemical Sciences ; Chemistry ; Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Material chemistry ; Solid-liquid interface ; Surface physical chemistry ; Wettability</subject><ispartof>Langmuir, 2012-01, Vol.28 (1), p.1041-1048</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</citedby><cites>FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</cites><orcidid>0000-0001-9544-1578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la203645t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la203645t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25517326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22054097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00675001$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Theisen, Johannes</creatorcontrib><creatorcontrib>Davoust, Laurent</creatorcontrib><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Material chemistry</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Wettability</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LtOwzAUBmALgaBcBl4AeUGIIeBLHCdsFS0XqYgFZuvgOsXIjYPtFPXtSdXSLkyWjj79x-dH6JySG0oYvXXACC9ykfbQgApGMlEyuY8GROY8k3nBj9BxjF-EkIrn1SE6YoyInFRygPSoA5c9BPPdmUYv8dgZnYL_MSnZZnaHh23rrIZkfYOTx6PgWzxeQOvDevYI3ayH-MemT9tgwCM7swkcfrE6-LiMycxP0UENLpqzzXuC3h_Gb_dP2eT18fl-OMmAyzJlJa-oqLSeagGiliWFqdSQA6egKfuYMsYLVkHFODd1bTijdVnURhomS53zip-g63XuJzjVBjuHsFQerHoaTtRqRkghBSF0QXt7tbZt8P3pMam5jdo4B43xXVT9V3hJpJC71NU9MZh6G02JWtWvtvX39mKT2n3MzXQr__ruweUGQNTg6gCNtnHnhKCSs2LnQEf15bvQ9MX9s_AXkMSYlA</recordid><startdate>20120110</startdate><enddate>20120110</enddate><creator>Theisen, Johannes</creator><creator>Davoust, Laurent</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9544-1578</orcidid></search><sort><creationdate>20120110</creationdate><title>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</title><author>Theisen, Johannes ; Davoust, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-839159ccdc5a5f781ad7ca4a31ac12bd223629a9233effe321f86fe7e278c4393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Material chemistry</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theisen, Johannes</creatorcontrib><creatorcontrib>Davoust, Laurent</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theisen, Johannes</au><au>Davoust, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2012-01-10</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>1041</spage><epage>1048</epage><pages>1041-1048</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22054097</pmid><doi>10.1021/la203645t</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9544-1578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2012-01, Vol.28 (1), p.1041-1048
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_00675001v1
source MEDLINE; American Chemical Society Journals
subjects Chemical Sciences
Chemistry
Devices and Applications: Sensors, Fluidics, Patterning, Catalysis, Photonic Crystals
Electrochemistry
Exact sciences and technology
General and physical chemistry
Material chemistry
Solid-liquid interface
Surface physical chemistry
Wettability
title Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Frequency%20Electrowetting:%20Application%20to%20Drop%20Evaporation%20Gauging%20within%20a%20Digital%20Microsystem&rft.jtitle=Langmuir&rft.au=Theisen,%20Johannes&rft.date=2012-01-10&rft.volume=28&rft.issue=1&rft.spage=1041&rft.epage=1048&rft.pages=1041-1048&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la203645t&rft_dat=%3Cproquest_hal_p%3E915380757%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915380757&rft_id=info:pmid/22054097&rfr_iscdi=true