Dual-Frequency Electrowetting: Application to Drop Evaporation Gauging within a Digital Microsystem

This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-01, Vol.28 (1), p.1041-1048
Hauptverfasser: Theisen, Johannes, Davoust, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses a method to estimate the size of a sessile drop and to measure its evaporation kinetics by making use of both Michelson interferometry and coplanar electrowetting. From a high-frequency electrowetting voltage, the contact angle of the sessile droplet is monitored to permanently obtain a half-liquid sphere, thus complying perfectly with the drop evaporation theory based on a constant contact angle ( Bexon R. ; Picknett R. J. Colloid Interface Sci. 1977, 61, 336−350 ). Low-frequency modulation of the electrowetting actuation is also applied to cause droplet shape oscillations and capillary resonance. Interferometry allows us to measure a time-dependent capillary spectrum and, in particular, the shift in natural frequencies induced by drop evaporation. Consequently, diffusive kinetics of drop evaporation can be properly estimated, as demonstrated. Because of coplanar electrode configuration, our methodology can be integrated in open and covered microsystems, such as digital lab-on-a-chip devices.
ISSN:0743-7463
1520-5827
DOI:10.1021/la203645t