Asymptotic properties of random matrices of long-range percolation model

We study the spectral properties of matrices of long-range percolation model. These are N × N random real symmetric matrices H = {H(i, j)} i,j whose elements are independent random variables taking zero value with probability , where ψ is an even positive function with ψ(t) ≤ 1 and vanishing at infi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random operators and stochastic equations 2009-12, Vol.17 (4), p.295-341
1. Verfasser: Ayadi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the spectral properties of matrices of long-range percolation model. These are N × N random real symmetric matrices H = {H(i, j)} i,j whose elements are independent random variables taking zero value with probability , where ψ is an even positive function with ψ(t) ≤ 1 and vanishing at infinity. We study the resolvent G(z) = (H – z)–1, Im z ≠ 0, in the limit N, b → ∞, b = O(Nα ), 1/3 < α < 1, and obtain the explicit expression T(z 1, z 2) for the leading term of the correlation function of the normalized trace of the resolvent gN,b (z) = N –1TrG(z). We show that in the scaling limit of local correlations, this term leads to the expression found earlier by other authors for band random matrix ensembles. This shows that the ratio b 2/N is the correct scale for the eigenvalue density correlation function and that the ensemble we study and that of band random matrices belong to the same class of spectral universality.
ISSN:0926-6364
1569-397X
DOI:10.1515/ROSE.2009.019