Explicit solutions of some linear-quadratic mean field games

We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks and heterogeneous media 2012-06, Vol.7 (2), p.243-261
1. Verfasser: Bardi, Martino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 2
container_start_page 243
container_title Networks and heterogeneous media
container_volume 7
creator Bardi, Martino
description We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
doi_str_mv 10.3934/nhm.2012.7.243
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00664442v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00664442v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-8818742f51cdec4a37b0d546e49db84a69c27102734aa05e23bad309c940e69e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFavnnP1kDi7M8km4KWUaoWAFwVvy3SzsSv5qNlU9N-bUunpnXd4Zg6PELcSEiyQ7rttmyiQKtGJIjwTM5mmWSxz-X5-mkFeiqsQPgEINeBMPKx-do23foxC3-xH33ch6uuptC5qfOd4iL_2XA08ehu1jruo9q6pog9uXbgWFzU3wd3851y8Pa5el-u4fHl6Xi7K2KLEMc5zmWtSdSpt5Swx6g1UKWWOimqTE2eFVVqC0kjMkDqFG64QClsQuKxwOBd3x79bbsxu8C0Pv6Znb9aL0hx2AFlGROpbTmxyZO3QhzC4-nQgwRw8mcmTOXgy2kye8A9ldlqH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit solutions of some linear-quadratic mean field games</title><source>Alma/SFX Local Collection</source><creator>Bardi, Martino</creator><creatorcontrib>Bardi, Martino</creatorcontrib><description>We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.</description><identifier>ISSN: 1556-1801</identifier><identifier>EISSN: 1556-181X</identifier><identifier>DOI: 10.3934/nhm.2012.7.243</identifier><language>eng</language><publisher>American Institute of Mathematical Sciences</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>Networks and heterogeneous media, 2012-06, Vol.7 (2), p.243-261</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-8818742f51cdec4a37b0d546e49db84a69c27102734aa05e23bad309c940e69e3</citedby><cites>FETCH-LOGICAL-c313t-8818742f51cdec4a37b0d546e49db84a69c27102734aa05e23bad309c940e69e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00664442$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardi, Martino</creatorcontrib><title>Explicit solutions of some linear-quadratic mean field games</title><title>Networks and heterogeneous media</title><description>We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>1556-1801</issn><issn>1556-181X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFavnnP1kDi7M8km4KWUaoWAFwVvy3SzsSv5qNlU9N-bUunpnXd4Zg6PELcSEiyQ7rttmyiQKtGJIjwTM5mmWSxz-X5-mkFeiqsQPgEINeBMPKx-do23foxC3-xH33ch6uuptC5qfOd4iL_2XA08ehu1jruo9q6pog9uXbgWFzU3wd3851y8Pa5el-u4fHl6Xi7K2KLEMc5zmWtSdSpt5Swx6g1UKWWOimqTE2eFVVqC0kjMkDqFG64QClsQuKxwOBd3x79bbsxu8C0Pv6Znb9aL0hx2AFlGROpbTmxyZO3QhzC4-nQgwRw8mcmTOXgy2kye8A9ldlqH</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Bardi, Martino</creator><general>American Institute of Mathematical Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120601</creationdate><title>Explicit solutions of some linear-quadratic mean field games</title><author>Bardi, Martino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-8818742f51cdec4a37b0d546e49db84a69c27102734aa05e23bad309c940e69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardi, Martino</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Networks and heterogeneous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardi, Martino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit solutions of some linear-quadratic mean field games</atitle><jtitle>Networks and heterogeneous media</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>243</spage><epage>261</epage><pages>243-261</pages><issn>1556-1801</issn><eissn>1556-181X</eissn><abstract>We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.</abstract><pub>American Institute of Mathematical Sciences</pub><doi>10.3934/nhm.2012.7.243</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-1801
ispartof Networks and heterogeneous media, 2012-06, Vol.7 (2), p.243-261
issn 1556-1801
1556-181X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00664442v1
source Alma/SFX Local Collection
subjects Mathematics
Optimization and Control
title Explicit solutions of some linear-quadratic mean field games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20solutions%20of%20some%20linear-quadratic%20mean%20field%20games&rft.jtitle=Networks%20and%20heterogeneous%20media&rft.au=Bardi,%20Martino&rft.date=2012-06-01&rft.volume=7&rft.issue=2&rft.spage=243&rft.epage=261&rft.pages=243-261&rft.issn=1556-1801&rft.eissn=1556-181X&rft_id=info:doi/10.3934/nhm.2012.7.243&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00664442v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true