Explicit solutions of some linear-quadratic mean field games

We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks and heterogeneous media 2012-06, Vol.7 (2), p.243-261
1. Verfasser: Bardi, Martino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider N-person differential games involving linear systems affected by white noise, running cost quadratic in the control and in the displacement of the state from a reference position, and with long-time-average integral cost functional. We solve an associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the limit as the number N of players goes to infinity, assuming they are almost identical and with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to a system of two differential equations of the kind introduced by Lasry and Lions in the theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this solution depends on the sign of a single parameter. We also discuss some singular limits, such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q model with other Mean Field models of population distribution.
ISSN:1556-1801
1556-181X
DOI:10.3934/nhm.2012.7.243