Strong solutions for a 1D viscous bilayer shallow water model

In this paper, we consider a viscous bilayer shallow water model in one space dimension that represents two superposed immiscible fluids. For this model, we prove the existence of strong solutions in a periodic domain. The initial heights are required to be bounded above and below away from zero and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2013-04, Vol.14 (2), p.1216-1224
Hauptverfasser: Zabsonré, Jean De Dieu, Lucas, Carine, Ouedraogo, Adama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a viscous bilayer shallow water model in one space dimension that represents two superposed immiscible fluids. For this model, we prove the existence of strong solutions in a periodic domain. The initial heights are required to be bounded above and below away from zero and we get the same bounds for every time. Our analysis is based on the construction of approximate systems which satisfy the BD entropy and on the method developed by A. Mellet and A. Vasseur to obtain the existence of global strong solutions for the one dimensional Navier–Stokes equations.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2012.09.012