The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework

We generalize the notion, introduced by Henri Cartan, of an operation of a Lie algebra g in a graded differential algebra Ω. We define the notion of an operation of a Hopf algebra H in a graded differential algebra Ω which is referred to as a H -operation. We then generalize for such an operation th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2014-03, Vol.326 (3), p.851-874
Hauptverfasser: Dubois-Violette, Michel, Landi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the notion, introduced by Henri Cartan, of an operation of a Lie algebra g in a graded differential algebra Ω. We define the notion of an operation of a Hopf algebra H in a graded differential algebra Ω which is referred to as a H -operation. We then generalize for such an operation the notion of algebraic connection. Finally we discuss the corresponding noncommutative version of the Weil algebra: The Weil algebra W ( H ) of the Hopf algebra H is the universal initial object of the category of H -operations with connections.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-1902-7