Construction et classification de certaines solutions algébriques des systèmes de Garnier

In this paper, we classify all (complete) non elementary algebraic solutions of Garnier systems that can be constructed by Kitaev's method: they are deduced from isomonodromic deformations defined by pulling back a given fuchsian equation E by a family of ramified covers. We first introduce orb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2013-03, Vol.44 (1), p.129-154
1. Verfasser: Diarra, Karamoko
Format: Artikel
Sprache:fre ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we classify all (complete) non elementary algebraic solutions of Garnier systems that can be constructed by Kitaev's method: they are deduced from isomonodromic deformations defined by pulling back a given fuchsian equation E by a family of ramified covers. We first introduce orbifold structures associated to a fuchsian equation. This allow to get a refined version of Riemann-Hurwitz formula and then to promtly deduce that E is hypergeometric. Then, we can bound exponents and degree of the pull-back maps and further list all possible ramification cases. This generalizes a result due to C. Doran for the Painleve VI case. We explicitely construct one of these solutions.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-013-0006-x