The most powerful multivariate normality test for plant genomics and dynamics data sets

Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological informatics 2011-03, Vol.6 (2), p.125-126
Hauptverfasser: Delmail, David, Labrousse, Pascal, Botineau, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 2
container_start_page 125
container_title Ecological informatics
container_volume 6
creator Delmail, David
Labrousse, Pascal
Botineau, Michel
description Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.
doi_str_mv 10.1016/j.ecoinf.2011.01.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00654531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574954111000148</els_id><sourcerecordid>867749755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</originalsourceid><addsrcrecordid>eNp9kMtOKzEMhmcBEpfDGyCRHWLRnqS5TLNBQojLkSqxoIhl5Mk4kGpmUpK0R317UgaxRLJl2f5sy39VnTM6ZZSpv6sp2uAHN51Rxqa0GOUH1TGTtZhoKdhRdZLSilLB5_PZcfW6fEfSh5TJOvzH6DYd6Tdd9luIHjKSIcQeOp93JGOBXIhk3cGQyRsOofc2ERha0u4G-EpayEAS5vSnOnTQJTz7jqfVy_3d8vZxsnh6-Hd7s5hYrlWeCGGbmjtslGz4XAnZykZo51BBqxVorrVyDph2ugUQelbPFDSaS42NKw1-Wl2Ne9-hM-voe4g7E8Cbx5uF2dcoVVJIzrassJcju47hY1PeMb1PFrvyD4ZNMnNV10LXUhZSjKSNIaWI7mc1o2Yvs1mZUWazl9nQYpSXsYtxzEEw8BZ9Mi_PBRC0OKe1LsT1SGDRZOsxmmQ9DhZbH9Fm0wb_-4lP2l6UdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867749755</pqid></control><display><type>article</type><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><source>Elsevier ScienceDirect Journals</source><creator>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</creator><creatorcontrib>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</creatorcontrib><description>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</description><identifier>ISSN: 1574-9541</identifier><identifier>DOI: 10.1016/j.ecoinf.2011.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; analysis of variance ; Biochemistry ; Biochemistry, Molecular Biology ; data collection ; Data matrix ; Environmental Sciences ; genomics ; Leptokurtic distribution ; Life Sciences ; Multivariate normality test ; R package ; Shapiro–Francia</subject><ispartof>Ecological informatics, 2011-03, Vol.6 (2), p.125-126</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</citedby><cites>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</cites><orcidid>0000-0003-4665-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1574954111000148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-00654531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmail, David</creatorcontrib><creatorcontrib>Labrousse, Pascal</creatorcontrib><creatorcontrib>Botineau, Michel</creatorcontrib><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><title>Ecological informatics</title><description>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</description><subject>Algorithms</subject><subject>analysis of variance</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>data collection</subject><subject>Data matrix</subject><subject>Environmental Sciences</subject><subject>genomics</subject><subject>Leptokurtic distribution</subject><subject>Life Sciences</subject><subject>Multivariate normality test</subject><subject>R package</subject><subject>Shapiro–Francia</subject><issn>1574-9541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOKzEMhmcBEpfDGyCRHWLRnqS5TLNBQojLkSqxoIhl5Mk4kGpmUpK0R317UgaxRLJl2f5sy39VnTM6ZZSpv6sp2uAHN51Rxqa0GOUH1TGTtZhoKdhRdZLSilLB5_PZcfW6fEfSh5TJOvzH6DYd6Tdd9luIHjKSIcQeOp93JGOBXIhk3cGQyRsOofc2ERha0u4G-EpayEAS5vSnOnTQJTz7jqfVy_3d8vZxsnh6-Hd7s5hYrlWeCGGbmjtslGz4XAnZykZo51BBqxVorrVyDph2ugUQelbPFDSaS42NKw1-Wl2Ne9-hM-voe4g7E8Cbx5uF2dcoVVJIzrassJcju47hY1PeMb1PFrvyD4ZNMnNV10LXUhZSjKSNIaWI7mc1o2Yvs1mZUWazl9nQYpSXsYtxzEEw8BZ9Mi_PBRC0OKe1LsT1SGDRZOsxmmQ9DhZbH9Fm0wb_-4lP2l6UdA</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Delmail, David</creator><creator>Labrousse, Pascal</creator><creator>Botineau, Michel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4665-5101</orcidid></search><sort><creationdate>20110301</creationdate><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><author>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>analysis of variance</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>data collection</topic><topic>Data matrix</topic><topic>Environmental Sciences</topic><topic>genomics</topic><topic>Leptokurtic distribution</topic><topic>Life Sciences</topic><topic>Multivariate normality test</topic><topic>R package</topic><topic>Shapiro–Francia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmail, David</creatorcontrib><creatorcontrib>Labrousse, Pascal</creatorcontrib><creatorcontrib>Botineau, Michel</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ecological informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmail, David</au><au>Labrousse, Pascal</au><au>Botineau, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The most powerful multivariate normality test for plant genomics and dynamics data sets</atitle><jtitle>Ecological informatics</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>6</volume><issue>2</issue><spage>125</spage><epage>126</epage><pages>125-126</pages><issn>1574-9541</issn><abstract>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecoinf.2011.01.003</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-4665-5101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1574-9541
ispartof Ecological informatics, 2011-03, Vol.6 (2), p.125-126
issn 1574-9541
language eng
recordid cdi_hal_primary_oai_HAL_hal_00654531v1
source Elsevier ScienceDirect Journals
subjects Algorithms
analysis of variance
Biochemistry
Biochemistry, Molecular Biology
data collection
Data matrix
Environmental Sciences
genomics
Leptokurtic distribution
Life Sciences
Multivariate normality test
R package
Shapiro–Francia
title The most powerful multivariate normality test for plant genomics and dynamics data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20most%20powerful%20multivariate%20normality%20test%20for%20plant%20genomics%20and%20dynamics%20data%20sets&rft.jtitle=Ecological%20informatics&rft.au=Delmail,%20David&rft.date=2011-03-01&rft.volume=6&rft.issue=2&rft.spage=125&rft.epage=126&rft.pages=125-126&rft.issn=1574-9541&rft_id=info:doi/10.1016/j.ecoinf.2011.01.003&rft_dat=%3Cproquest_hal_p%3E867749755%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867749755&rft_id=info:pmid/&rft_els_id=S1574954111000148&rfr_iscdi=true