The most powerful multivariate normality test for plant genomics and dynamics data sets
Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic d...
Gespeichert in:
Veröffentlicht in: | Ecological informatics 2011-03, Vol.6 (2), p.125-126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Ecological informatics |
container_volume | 6 |
creator | Delmail, David Labrousse, Pascal Botineau, Michel |
description | Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies. |
doi_str_mv | 10.1016/j.ecoinf.2011.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00654531v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574954111000148</els_id><sourcerecordid>867749755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</originalsourceid><addsrcrecordid>eNp9kMtOKzEMhmcBEpfDGyCRHWLRnqS5TLNBQojLkSqxoIhl5Mk4kGpmUpK0R317UgaxRLJl2f5sy39VnTM6ZZSpv6sp2uAHN51Rxqa0GOUH1TGTtZhoKdhRdZLSilLB5_PZcfW6fEfSh5TJOvzH6DYd6Tdd9luIHjKSIcQeOp93JGOBXIhk3cGQyRsOofc2ERha0u4G-EpayEAS5vSnOnTQJTz7jqfVy_3d8vZxsnh6-Hd7s5hYrlWeCGGbmjtslGz4XAnZykZo51BBqxVorrVyDph2ugUQelbPFDSaS42NKw1-Wl2Ne9-hM-voe4g7E8Cbx5uF2dcoVVJIzrassJcju47hY1PeMb1PFrvyD4ZNMnNV10LXUhZSjKSNIaWI7mc1o2Yvs1mZUWazl9nQYpSXsYtxzEEw8BZ9Mi_PBRC0OKe1LsT1SGDRZOsxmmQ9DhZbH9Fm0wb_-4lP2l6UdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867749755</pqid></control><display><type>article</type><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><source>Elsevier ScienceDirect Journals</source><creator>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</creator><creatorcontrib>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</creatorcontrib><description>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</description><identifier>ISSN: 1574-9541</identifier><identifier>DOI: 10.1016/j.ecoinf.2011.01.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; analysis of variance ; Biochemistry ; Biochemistry, Molecular Biology ; data collection ; Data matrix ; Environmental Sciences ; genomics ; Leptokurtic distribution ; Life Sciences ; Multivariate normality test ; R package ; Shapiro–Francia</subject><ispartof>Ecological informatics, 2011-03, Vol.6 (2), p.125-126</ispartof><rights>2011 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</citedby><cites>FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</cites><orcidid>0000-0003-4665-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1574954111000148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://unilim.hal.science/hal-00654531$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmail, David</creatorcontrib><creatorcontrib>Labrousse, Pascal</creatorcontrib><creatorcontrib>Botineau, Michel</creatorcontrib><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><title>Ecological informatics</title><description>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</description><subject>Algorithms</subject><subject>analysis of variance</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>data collection</subject><subject>Data matrix</subject><subject>Environmental Sciences</subject><subject>genomics</subject><subject>Leptokurtic distribution</subject><subject>Life Sciences</subject><subject>Multivariate normality test</subject><subject>R package</subject><subject>Shapiro–Francia</subject><issn>1574-9541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOKzEMhmcBEpfDGyCRHWLRnqS5TLNBQojLkSqxoIhl5Mk4kGpmUpK0R317UgaxRLJl2f5sy39VnTM6ZZSpv6sp2uAHN51Rxqa0GOUH1TGTtZhoKdhRdZLSilLB5_PZcfW6fEfSh5TJOvzH6DYd6Tdd9luIHjKSIcQeOp93JGOBXIhk3cGQyRsOofc2ERha0u4G-EpayEAS5vSnOnTQJTz7jqfVy_3d8vZxsnh6-Hd7s5hYrlWeCGGbmjtslGz4XAnZykZo51BBqxVorrVyDph2ugUQelbPFDSaS42NKw1-Wl2Ne9-hM-voe4g7E8Cbx5uF2dcoVVJIzrassJcju47hY1PeMb1PFrvyD4ZNMnNV10LXUhZSjKSNIaWI7mc1o2Yvs1mZUWazl9nQYpSXsYtxzEEw8BZ9Mi_PBRC0OKe1LsT1SGDRZOsxmmQ9DhZbH9Fm0wb_-4lP2l6UdA</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Delmail, David</creator><creator>Labrousse, Pascal</creator><creator>Botineau, Michel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4665-5101</orcidid></search><sort><creationdate>20110301</creationdate><title>The most powerful multivariate normality test for plant genomics and dynamics data sets</title><author>Delmail, David ; Labrousse, Pascal ; Botineau, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-44cb73feb65b38645d5b49ffe6ad96a93996ffa19f9daa492726ab9359ebfffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>analysis of variance</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>data collection</topic><topic>Data matrix</topic><topic>Environmental Sciences</topic><topic>genomics</topic><topic>Leptokurtic distribution</topic><topic>Life Sciences</topic><topic>Multivariate normality test</topic><topic>R package</topic><topic>Shapiro–Francia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmail, David</creatorcontrib><creatorcontrib>Labrousse, Pascal</creatorcontrib><creatorcontrib>Botineau, Michel</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ecological informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmail, David</au><au>Labrousse, Pascal</au><au>Botineau, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The most powerful multivariate normality test for plant genomics and dynamics data sets</atitle><jtitle>Ecological informatics</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>6</volume><issue>2</issue><spage>125</spage><epage>126</epage><pages>125-126</pages><issn>1574-9541</issn><abstract>Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecoinf.2011.01.003</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-4665-5101</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-9541 |
ispartof | Ecological informatics, 2011-03, Vol.6 (2), p.125-126 |
issn | 1574-9541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00654531v1 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms analysis of variance Biochemistry Biochemistry, Molecular Biology data collection Data matrix Environmental Sciences genomics Leptokurtic distribution Life Sciences Multivariate normality test R package Shapiro–Francia |
title | The most powerful multivariate normality test for plant genomics and dynamics data sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20most%20powerful%20multivariate%20normality%20test%20for%20plant%20genomics%20and%20dynamics%20data%20sets&rft.jtitle=Ecological%20informatics&rft.au=Delmail,%20David&rft.date=2011-03-01&rft.volume=6&rft.issue=2&rft.spage=125&rft.epage=126&rft.pages=125-126&rft.issn=1574-9541&rft_id=info:doi/10.1016/j.ecoinf.2011.01.003&rft_dat=%3Cproquest_hal_p%3E867749755%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867749755&rft_id=info:pmid/&rft_els_id=S1574954111000148&rfr_iscdi=true |