The most powerful multivariate normality test for plant genomics and dynamics data sets

Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological informatics 2011-03, Vol.6 (2), p.125-126
Hauptverfasser: Delmail, David, Labrousse, Pascal, Botineau, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro–Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro–Francia test to multivariate data matrix in plant studies.
ISSN:1574-9541
DOI:10.1016/j.ecoinf.2011.01.003