Third order residual distribution schemes for the Navier–Stokes equations

We construct a third order multidimensional upwind residual distribution scheme for the system of the Navier–Stokes equations. The underlying approximation is obtained using standard P 2 Lagrange finite elements. To discretise the inviscid component of the equations, each element is divided in sub-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2011-05, Vol.230 (11), p.4301-4315
Hauptverfasser: Villedieu, N., Quintino, T., Ricchiuto, M., Deconinck, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a third order multidimensional upwind residual distribution scheme for the system of the Navier–Stokes equations. The underlying approximation is obtained using standard P 2 Lagrange finite elements. To discretise the inviscid component of the equations, each element is divided in sub-elements over which we compute a high order residual defined as the integral of the inviscid fluxes on the boundary of the sub-element. The residuals are distributed to the nodes of each sub-element in a multi-dimensional upwind way. To obtain a discretisation of the viscous terms consistent with this multi-dimensional upwind approach, we make use of a Petrov–Galerkin analogy. The analogy allows to find a family of test functions which can be used to obtain a weak approximation of the viscous terms. The performance of this high-order method is tested on flows with high and low Reynolds number.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2010.12.026