Budan tables of real univariate polynomials

The Budan table of f collects the signs of the iterated derivatives of f. We revisit the classical Budan–Fourier theorem for a univariate real polynomial f and establish a new connectivity property of its Budan table. We use this property to characterize the virtual roots of f (introduced by Gonzale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation 2013-06, Vol.53, p.64-80
1. Verfasser: Galligo, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Budan table of f collects the signs of the iterated derivatives of f. We revisit the classical Budan–Fourier theorem for a univariate real polynomial f and establish a new connectivity property of its Budan table. We use this property to characterize the virtual roots of f (introduced by Gonzalez-Vega, Lombardi, Mahé in 1998); they are continuous functions of the coefficients of f. We also consider a property (P) of a polynomial f, which is generically satisfied, it eases the topological-combinatorial description and study of Budan tables. A natural extension of the information collected by the virtual roots provides alternative representations of (P)-polynomials; while an attached tree structure allows a finite stratification of the space of polynomials with fixed degree.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2012.11.004