Cyclic behaviour of short glass fibre reinforced polyamide: Experimental study and constitutive equations

Polymer matrix composites are widely used in the automotive industry and undergo fatigue loadings. The investigation of the nonlinear cyclic behaviour of such materials is a required preliminary work for a confident fatigue design, but has not involved many publications in the literature. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2011-08, Vol.27 (8), p.1267-1293
Hauptverfasser: Launay, A., Maitournam, M.H., Marco, Y., Raoult, I., Szmytka, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymer matrix composites are widely used in the automotive industry and undergo fatigue loadings. The investigation of the nonlinear cyclic behaviour of such materials is a required preliminary work for a confident fatigue design, but has not involved many publications in the literature. This paper presents an extensive experimental study conducted on a polyamide 66 reinforced with 35 wt% of short glass fibres (PA66 GF35), at room temperature. The material was tested in two conditions: dry-as-moulded (DAM) and at the equilibrium with air containing 50% of relative humidity (RH50). An exhaustive experimental campaign in tensile mode has been carried out, including various strain or stress rates, complex mechanical histories and local thermo-mechanical recordings. Such an extended database allowed us to highlight several complex physical phenomena: viscoelastic effects at different time scales, irrecoverable mechanisms, non-linear kinematic hardening, non-linear viscous flow rule, cyclic softening. Taking into account this advanced analysis, a constitutive model describing the cyclic behaviour is proposed. As the experimental database only includes uniaxial tensile tests, the general 3D anisotropic frame is reduced to an uniaxial model valid for a specific orientation distribution. The robust identification process is based on tests which enable the uncoupling between the underlined mechanical features. This strategy leads to a model which accurately predicts the cyclic behaviour of conditioned as well as dry materials under complex tensile loadings.
ISSN:0749-6419
1879-2154
DOI:10.1016/j.ijplas.2011.02.005