Hölder continuous solutions to Monge–Ampère equations

Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p>1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (4), p.619-647
Hauptverfasser: Demailly, Jean-Pierre, Dinew, Sławomir, Guedj, Vincent, Hiep, Pham Hoang, Kołodziej, Sławomir, Zeriahi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 4
container_start_page 619
container_title Journal of the European Mathematical Society : JEMS
container_volume 16
creator Demailly, Jean-Pierre
Dinew, Sławomir
Guedj, Vincent
Hiep, Pham Hoang
Kołodziej, Sławomir
Zeriahi, Ahmed
description Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p>1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-pluri\-subharmonic Hölder continuous functions. We show that this set is convex, by sharpening\break Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the "$L^p$-property'', $p>1$. We also describe accurately the symmetric measures it contains.
doi_str_mv 10.4171/JEMS/442
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00648928v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00648928v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-22acd1c3f14adaec14c44a8e643bfee5dfc65938d4524b545ef89774d382238e3</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqUgcYQsWMAiNLbHibOsqkJArVgAa8t1JpAqjYudILHjDlyCE3CB3oSTkLSoqxn9eTPSPELOaXQNNKGj--n8cQTADsiAAhdhKmN-uO-FOCYn3i-jiCYC-ICk2eanytEFxtZNWbe29YG3VduUtvZBY4O5rV_w9_NrvFpvvh0G-Nbq7fCUHBW68nj2X4fk-Wb6NMnC2cPt3WQ8Cw2PeRMypk1ODS8o6FyjoWAAtMQY-KJAFHlhYpFymYNgsBAgsJBpkkDOJWNcIh-Sq93dV12ptStX2n0oq0uVjWeqz6IoBpky-U479nLHGme9d1jsF2ikej1qiSuvOj0derFD-2BpW1d3T-yx3uIW-wOvSmWl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hölder continuous solutions to Monge–Ampère equations</title><source>European Mathematical Society Publishing House</source><creator>Demailly, Jean-Pierre ; Dinew, Sławomir ; Guedj, Vincent ; Hiep, Pham Hoang ; Kołodziej, Sławomir ; Zeriahi, Ahmed</creator><creatorcontrib>Demailly, Jean-Pierre ; Dinew, Sławomir ; Guedj, Vincent ; Hiep, Pham Hoang ; Kołodziej, Sławomir ; Zeriahi, Ahmed</creatorcontrib><description>Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p&gt;1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-pluri\-subharmonic Hölder continuous functions. We show that this set is convex, by sharpening\break Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the "$L^p$-property'', $p&gt;1$. We also describe accurately the symmetric measures it contains.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/442</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Complex Variables ; Differential Geometry ; Mathematics ; Several complex variables and analytic spaces</subject><ispartof>Journal of the European Mathematical Society : JEMS, 2014-01, Vol.16 (4), p.619-647</ispartof><rights>European Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-22acd1c3f14adaec14c44a8e643bfee5dfc65938d4524b545ef89774d382238e3</citedby><orcidid>0000-0002-6997-9865 ; 0000-0002-4281-3523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,24053,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00648928$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Demailly, Jean-Pierre</creatorcontrib><creatorcontrib>Dinew, Sławomir</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Kołodziej, Sławomir</creatorcontrib><creatorcontrib>Zeriahi, Ahmed</creatorcontrib><title>Hölder continuous solutions to Monge–Ampère equations</title><title>Journal of the European Mathematical Society : JEMS</title><addtitle>J. Eur. Math. Soc</addtitle><description>Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p&gt;1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-pluri\-subharmonic Hölder continuous functions. We show that this set is convex, by sharpening\break Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the "$L^p$-property'', $p&gt;1$. We also describe accurately the symmetric measures it contains.</description><subject>Complex Variables</subject><subject>Differential Geometry</subject><subject>Mathematics</subject><subject>Several complex variables and analytic spaces</subject><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAQRS0EEqUgcYQsWMAiNLbHibOsqkJArVgAa8t1JpAqjYudILHjDlyCE3CB3oSTkLSoqxn9eTPSPELOaXQNNKGj--n8cQTADsiAAhdhKmN-uO-FOCYn3i-jiCYC-ICk2eanytEFxtZNWbe29YG3VduUtvZBY4O5rV_w9_NrvFpvvh0G-Nbq7fCUHBW68nj2X4fk-Wb6NMnC2cPt3WQ8Cw2PeRMypk1ODS8o6FyjoWAAtMQY-KJAFHlhYpFymYNgsBAgsJBpkkDOJWNcIh-Sq93dV12ptStX2n0oq0uVjWeqz6IoBpky-U479nLHGme9d1jsF2ikej1qiSuvOj0derFD-2BpW1d3T-yx3uIW-wOvSmWl</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Demailly, Jean-Pierre</creator><creator>Dinew, Sławomir</creator><creator>Guedj, Vincent</creator><creator>Hiep, Pham Hoang</creator><creator>Kołodziej, Sławomir</creator><creator>Zeriahi, Ahmed</creator><general>European Mathematical Society Publishing House</general><general>European Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6997-9865</orcidid><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid></search><sort><creationdate>20140101</creationdate><title>Hölder continuous solutions to Monge–Ampère equations</title><author>Demailly, Jean-Pierre ; Dinew, Sławomir ; Guedj, Vincent ; Hiep, Pham Hoang ; Kołodziej, Sławomir ; Zeriahi, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-22acd1c3f14adaec14c44a8e643bfee5dfc65938d4524b545ef89774d382238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Complex Variables</topic><topic>Differential Geometry</topic><topic>Mathematics</topic><topic>Several complex variables and analytic spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demailly, Jean-Pierre</creatorcontrib><creatorcontrib>Dinew, Sławomir</creatorcontrib><creatorcontrib>Guedj, Vincent</creatorcontrib><creatorcontrib>Hiep, Pham Hoang</creatorcontrib><creatorcontrib>Kołodziej, Sławomir</creatorcontrib><creatorcontrib>Zeriahi, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demailly, Jean-Pierre</au><au>Dinew, Sławomir</au><au>Guedj, Vincent</au><au>Hiep, Pham Hoang</au><au>Kołodziej, Sławomir</au><au>Zeriahi, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hölder continuous solutions to Monge–Ampère equations</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><addtitle>J. Eur. Math. Soc</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>4</issue><spage>619</spage><epage>647</epage><pages>619-647</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p&gt;1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-pluri\-subharmonic Hölder continuous functions. We show that this set is convex, by sharpening\break Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the "$L^p$-property'', $p&gt;1$. We also describe accurately the symmetric measures it contains.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/JEMS/442</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6997-9865</orcidid><orcidid>https://orcid.org/0000-0002-4281-3523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2014-01, Vol.16 (4), p.619-647
issn 1435-9855
1435-9863
language eng
recordid cdi_hal_primary_oai_HAL_hal_00648928v1
source European Mathematical Society Publishing House
subjects Complex Variables
Differential Geometry
Mathematics
Several complex variables and analytic spaces
title Hölder continuous solutions to Monge–Ampère equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%C3%B6lder%20continuous%20solutions%20to%20Monge%E2%80%93Amp%C3%A8re%20equations&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Demailly,%20Jean-Pierre&rft.date=2014-01-01&rft.volume=16&rft.issue=4&rft.spage=619&rft.epage=647&rft.pages=619-647&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/442&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00648928v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true