Hölder continuous solutions to Monge–Ampère equations
Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p>1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2014-01, Vol.16 (4), p.619-647 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $(X,\omega)$ be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on $X$ with $L^p$ right hand side, \hbox{$p>1$}. The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range $\MAH(X,\omega)$ of the complex Monge-Ampère operator acting on $\omega$-pluri\-subharmonic Hölder continuous functions. We show that this set is convex, by sharpening\break Ko\l odziej's result that measures with $L^p$-density belong to $\MAH(X,\omega)$ and proving that $\MAH(X,\omega)$ has the "$L^p$-property'', $p>1$. We also describe accurately the symmetric measures it contains. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/442 |