A Lichnerowicz estimate for the first eigenvalue of convex domains in Kähler manifolds
In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies $\Ric \ge k$ for some constant $k>0$. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field...
Gespeichert in:
Veröffentlicht in: | Analysis & PDE 2013-11, Vol.6 (5), p.1001-1012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies $\Ric \ge k$ for some constant $k>0$. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field. We show that a ball of sufficiently large radius in complex projective space provides an example of a strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails. |
---|---|
ISSN: | 2157-5045 1948-206X |
DOI: | 10.2140/apde.2013.6.1001 |