A Lichnerowicz estimate for the first eigenvalue of convex domains in Kähler manifolds

In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies $\Ric \ge k$ for some constant $k>0$. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis & PDE 2013-11, Vol.6 (5), p.1001-1012
Hauptverfasser: Guedj, Vincent, Kolev, Boris, Yeganefar, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies $\Ric \ge k$ for some constant $k>0$. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field. We show that a ball of sufficiently large radius in complex projective space provides an example of a strongly pseudoconvex domain which is not convex, and for which the Lichnerowicz estimate fails.
ISSN:2157-5045
1948-206X
DOI:10.2140/apde.2013.6.1001