An Approximating-Interpolatory Subdivision Scheme
In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces ner and ner meshes with quads and triangles (Fig. 1). Design- ers often want to model...
Gespeichert in:
Veröffentlicht in: | International journal of pure and applied mathematics : IJPAM 2011, Vol.71 (1), p.129-147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces ner and ner meshes with quads and triangles (Fig. 1). Design- ers often want to model certain regions with quad meshes and others with triangle meshes to get better visual qual- ity of subdivision surfaces. Smoothness analysis tools exist for regular quad/triangle vertices. Moreover C1 and C2 quad/triangle schemes (for regular vertices) have been con- structed. But to our knowledge, there are no quad/triangle schemes that uni es approximating and interpolatory sub- division schemes. In this paper we introduce a new subdivision operator that uni es triangular and quadrilateral subdivision schemes. Our new scheme is a generalization of the well known Catmull- Clark and Butterfly subdivision algorithms. We show that in the regular case along the quad/triangle boundary where vertices are shared by two adjacent quads and three adjacent triangles our scheme is C2 everywhere except for ordinary Butterfly where our scheme is C1. |
---|---|
ISSN: | 1311-8080 1314-3395 |