Schematic homotopy types and non-abelian Hodge theory

We use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor$X \mapsto (X\otimes \mathbb {C})^{\mathrm {sch}}$, introduced by the third author as a substitute for the rationalization funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2008-05, Vol.144 (3), p.582-632
Hauptverfasser: Katzarkov, L., Pantev, T., Toën, B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor$X \mapsto (X\otimes \mathbb {C})^{\mathrm {sch}}$, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on $(X\otimes \mathbb {C})^{\mathrm {sch}}$. This Hodge decomposition is encoded in an action of the discrete group $\mathbb {C}^{\times \delta }$ on the object $(X\otimes \mathbb {C})^{\mathrm {sch}}$ and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro-algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X07003351