A composite semi-conservative scheme for hyperbolic conservation laws
In this work a first order accurate semi-conservative composite scheme is presented for hyperbolic conservation laws. The idea is to consider the non-conservative form of conservation law and utilize the explicit wave propagation direction to construct semi-conservative upwind scheme. This method ca...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010, Vol.215 (9), p.3335-3342 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work a first order accurate semi-conservative composite scheme is presented for hyperbolic conservation laws. The idea is to consider the non-conservative form of conservation law and utilize the explicit wave propagation direction to construct semi-conservative upwind scheme. This method captures the shock waves exactly with less numerical dissipation but generates unphysical rarefaction shocks in case of expansion waves with sonic points. It shows less dissipative nature of constructed scheme. In order to overcome it, we use the strategy of composite schemes. A very simple criteria based on wave speed direction is given to decide the iterations. The proposed method is applied to a variety of test problems and numerical results show accurate shock capturing and higher resolution for rarefaction fan. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2009.10.022 |