On the spectrum of stochastic perturbations of the shift and Julia sets

We extend the Killeen-Taylor study in \cite{KT} by investigating in different Banach spaces ($\ell^\alpha(\N), c_0(\N),c_c(\N)$) the point, continuous and residual spectra of stochastic perturbations of the shift operator in base $2$ and in Fibonacci base. For the base $2$, the spectra are connected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fundamenta mathematicae 2012-01, Vol.218 (1), p.47-68
Hauptverfasser: el Abdalaoui, el Houcein, Messaoudi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the Killeen-Taylor study in \cite{KT} by investigating in different Banach spaces ($\ell^\alpha(\N), c_0(\N),c_c(\N)$) the point, continuous and residual spectra of stochastic perturbations of the shift operator in base $2$ and in Fibonacci base. For the base $2$, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectra involve the Julia set of an endomorphism of $\C^2$.
ISSN:0016-2736
1730-6329
DOI:10.4064/fm218-1-3