On the spectrum of stochastic perturbations of the shift and Julia sets
We extend the Killeen-Taylor study in \cite{KT} by investigating in different Banach spaces ($\ell^\alpha(\N), c_0(\N),c_c(\N)$) the point, continuous and residual spectra of stochastic perturbations of the shift operator in base $2$ and in Fibonacci base. For the base $2$, the spectra are connected...
Gespeichert in:
Veröffentlicht in: | Fundamenta mathematicae 2012-01, Vol.218 (1), p.47-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the Killeen-Taylor study in \cite{KT} by investigating in different Banach spaces ($\ell^\alpha(\N), c_0(\N),c_c(\N)$) the point, continuous and residual spectra of stochastic perturbations of the shift operator in base $2$ and in Fibonacci base. For the base $2$, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectra involve the Julia set of an endomorphism of $\C^2$. |
---|---|
ISSN: | 0016-2736 1730-6329 |
DOI: | 10.4064/fm218-1-3 |