Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique

Incomplete protein release from PLGA-based microspheres due to protein interactions with the polymer is one of the main issues in the development of PLGA protein-loaded microspheres. In this study, a two-dimensional adsorption model was designed to rapidly assess the anti-adsorption effect of formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2010-06, Vol.75 (2), p.128-136
Hauptverfasser: Paillard-Giteau, A., Tran, V.T., Thomas, O., Garric, X., Coudane, J., Marchal, S., Chourpa, I., Benoît, J.P., Montero-Menei, C.N., Venier-Julienne, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incomplete protein release from PLGA-based microspheres due to protein interactions with the polymer is one of the main issues in the development of PLGA protein-loaded microspheres. In this study, a two-dimensional adsorption model was designed to rapidly assess the anti-adsorption effect of formulation components (additives, additives blended with the polymer or modified polymers). Lysozyme was chosen as a model protein because of its strong, non-specific adsorption on the PLGA surface. This study showed that PEGs, poloxamer 188 and BSA totally inhibited protein adsorption onto the PLGA37.5/25 layer. Similarly, it was emphasised that more hydrophilic polymers were less prone to protein adsorption. The correlation between this model and the in vitro release profile was made by microencapsulating lysozyme with a low loading in the presence of these excipients by a non-denaturing s/o/w encapsulation technique. The precipitation of lysozyme with the amphiphilic poloxamer 188 prior to encapsulation exhibited continuous release of active lysozyme over 3 weeks without any burst effect. To promote lysozyme release in the latter stage of release, a PLGA–PEG–PLGA tribloc copolymer was used; lysozyme was continuously released over 45 days in a biologically active form.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2010.03.005