ANALYSIS OF A QUADRATIC PROGRAMMING DECOMPOSITION ALGORITHM

We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2010-01, Vol.47 (6), p.4517-4539
Hauptverfasser: BENCTEUX, G., CANCÉS, E., HAGER, W. W., LE BRIS, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separately, while enforcing the constraints, followed by a global step where we minimize over a subspace generated by solutions to the local subproblems. We establish a local convergence result when the global minimizers are nondegenerate. Our analysis employs necessary and sufficient conditions and continuity properties for a global optimum of a quadratic objective function subject to a sphere constraint and a linear constraint. The analysis is connected with a new domain decomposition algorithm for electronic structure calculations.
ISSN:0036-1429
1095-7170
DOI:10.1137/070701728