ANALYSIS OF A QUADRATIC PROGRAMMING DECOMPOSITION ALGORITHM
We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separatel...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2010-01, Vol.47 (6), p.4517-4539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze a decomposition algorithm for minimizing a quadratic objective function, separable in x₁ and x₂, subject to the constraint that x₁ and x₂ are orthogonal vectors on the unit sphere. Our algorithm consists of a local step where we minimize the objective function in either variable separately, while enforcing the constraints, followed by a global step where we minimize over a subspace generated by solutions to the local subproblems. We establish a local convergence result when the global minimizers are nondegenerate. Our analysis employs necessary and sufficient conditions and continuity properties for a global optimum of a quadratic objective function subject to a sphere constraint and a linear constraint. The analysis is connected with a new domain decomposition algorithm for electronic structure calculations. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/070701728 |