Convergence of a misanthrope process to the entropy solution of 1D problems

We prove the convergence, in some strong sense, of a Markov process called “a misanthrope process” to the entropy weak solution of a one-dimensional scalar nonlinear hyperbolic equation. Such a process may be used for the simulation of traffic flows. The convergence proof relies on the uniqueness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2012-11, Vol.122 (11), p.3648-3679
Hauptverfasser: Eymard, R., Roussignol, M., Tordeux, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the convergence, in some strong sense, of a Markov process called “a misanthrope process” to the entropy weak solution of a one-dimensional scalar nonlinear hyperbolic equation. Such a process may be used for the simulation of traffic flows. The convergence proof relies on the uniqueness of entropy Young measure solutions to the nonlinear hyperbolic equation, which holds for both the bounded and the unbounded cases. In the unbounded case, we also prove an error estimate. Finally, numerical results show how this convergence result may be understood in practical cases.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2012.07.002