Modeling the high pH sensitivity of Suspended Gate Field Effect Transistor (SGFET)

High sensitivity to chemical species of sub-micron gap Suspended-Gate FETs (more than 200 mV/pH for example) is explained from the charge distribution induced by the high field in the sub-micronic gap under the gate-bridge. Modeling of Metal–Electrolyte–Insulator–Silicon (MEIS) capacitor, which is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2011-11, Vol.158 (1), p.138-143
Hauptverfasser: Salaün, A.-C., Le Bihan, F., Mohammed-Brahim, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High sensitivity to chemical species of sub-micron gap Suspended-Gate FETs (more than 200 mV/pH for example) is explained from the charge distribution induced by the high field in the sub-micronic gap under the gate-bridge. Modeling of Metal–Electrolyte–Insulator–Silicon (MEIS) capacitor, which is the basic vertical structure of the transistor, is performed to highlight this effect through the response to the pH change of the solution filling the gap. The analytical model is based on the 2D-numerical resolution of Poisson's equation. The response of quasi-static C( V) plots versus pH is simulated using both electrolyte charge distribution and site-binding theory considering the influence of sites densities on silicon nitride. Device modeling and simulated/experimental electrical characteristics are presented. Effect of the gap thickness on the pH sensitivity is also discussed in this study.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2011.05.056