On the heating of nano- and microparticles in process plasmas

Determination and understanding of energy fluxes to nano- or microparticles, which are confined in process plasmas, is highly desirable because the energy balance results in an equilibrium particle temperature which may even initiate the crystallization of nanoparticles. A simple balance model has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2011-05, Vol.44 (17), p.174029
Hauptverfasser: Maurer, H R, Kersten, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determination and understanding of energy fluxes to nano- or microparticles, which are confined in process plasmas, is highly desirable because the energy balance results in an equilibrium particle temperature which may even initiate the crystallization of nanoparticles. A simple balance model has been used to estimate the energy fluxes between plasma and immersed particles on the basis of measured plasma parameters. Addition of molecular hydrogen to the argon plasma results in additional heating of the particles due to molecule recombination. The measured particle temperature is discussed with respect to appearing plasma–particle interactions which contribute to the particle's energy balance.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/44/17/174029