EQUIDISTRIBUTION OF EISENSTEIN SERIES ON CONVEX CO-COMPACT HYPERBOLIC MANIFOLDS

For convex co-compact hyperbolic manifolds Γ\ℍn+1 for which the dimension of the limit set satisfies δΓ < n/2, we show that the high-frequency Eisenstein series associated to a point ξ "at infinity" concentrate microlocally on a measure supported by (the closure of) the set of points in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2014-04, Vol.136 (2), p.445-479
Hauptverfasser: Guillarmou, Colin, Naud, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For convex co-compact hyperbolic manifolds Γ\ℍn+1 for which the dimension of the limit set satisfies δΓ < n/2, we show that the high-frequency Eisenstein series associated to a point ξ "at infinity" concentrate microlocally on a measure supported by (the closure of) the set of points in the unit cotangent bundle corresponding to geodesics ending at ξ. The average in ξ of these limit measures is the Liouville measure.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2014.0015