EQUIDISTRIBUTION OF EISENSTEIN SERIES ON CONVEX CO-COMPACT HYPERBOLIC MANIFOLDS
For convex co-compact hyperbolic manifolds Γ\ℍn+1 for which the dimension of the limit set satisfies δΓ < n/2, we show that the high-frequency Eisenstein series associated to a point ξ "at infinity" concentrate microlocally on a measure supported by (the closure of) the set of points in...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2014-04, Vol.136 (2), p.445-479 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For convex co-compact hyperbolic manifolds Γ\ℍn+1 for which the dimension of the limit set satisfies δΓ < n/2, we show that the high-frequency Eisenstein series associated to a point ξ "at infinity" concentrate microlocally on a measure supported by (the closure of) the set of points in the unit cotangent bundle corresponding to geodesics ending at ξ. The average in ξ of these limit measures is the Liouville measure. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2014.0015 |