On the general additive divisor problem
We obtain a new upper bound for the sum Σ h ≤ H Δ k ( N, h ) when 1 ≤ H ≤ N, k ∈ ℕ, k ≥ 3, where Δ k ( N, h ) is the (expected) error term in the asymptotic formula for Σ N < n ≤2 N d k ( n ) d k ( n + h ), and d k ( n ) is the divisor function generated by ζ ( s ) k . When k = 3, the result impr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2012-04, Vol.276 (1), p.140-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a new upper bound for the sum Σ
h
≤
H
Δ
k
(
N, h
) when 1 ≤
H
≤
N, k
∈ ℕ,
k
≥ 3, where Δ
k
(
N, h
) is the (expected) error term in the asymptotic formula for Σ
N
<
n
≤2
N
d
k
(
n
)
d
k
(
n
+
h
), and
d
k
(
n
) is the divisor function generated by
ζ
(
s
)
k
. When
k
= 3, the result improves, for
H
≥
N
1/2
, the bound given in a recent work of Baier, Browning, Marasingha and Zhao, who dealt with the case
k
= 3. |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S0081543812010117 |