Improving relativistic modified Newtonian dynamics with Galileon k -mouflage

We propose a simple field theory reproducing the MOND phenomenology at galaxy scale, while predicting negligible deviations from general relativity at small scales thanks to an extended Vainshtein ("k-mouflage") mechanism induced by a covariant Galileon-type Lagrangian. The model passes so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2011-09, Vol.84 (6), Article 061502
Hauptverfasser: Babichev, Eugeny, Deffayet, Cédric, Esposito-Farèse, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a simple field theory reproducing the MOND phenomenology at galaxy scale, while predicting negligible deviations from general relativity at small scales thanks to an extended Vainshtein ("k-mouflage") mechanism induced by a covariant Galileon-type Lagrangian. The model passes solar-system tests at the post-Newtonian order, including those of local Lorentz invariance, and its anomalous forces in binary-pulsar systems are orders of magnitude smaller than the tightest experimental constraints. The large-distance behavior is obtained as in Bekenstein's tensor-vector-scalar (TeVeS) model, but with several simplifications. In particular, no fine-tuned function is needed to interpolate between the MOND and Newtonian regimes, and no dynamics needs to be defined for the vector field because preferred-frame effects are negligible at small distances. The field equations depend on second (and lower) derivatives, and avoid thus the generic instabilities related to higher derivatives. Their perturbative solution around a Schwarzschild background is remarkably simple to derive. We also underline why the proposed model is particularly efficient within the class of covariant Galileons.
ISSN:1550-7998
2470-0010
1550-2368
2470-0029
DOI:10.1103/PhysRevD.84.061502