Modeling of L-lactide Polymerization by Reactive Extrusion
The kinetics of L-lactide ring-opening polymerization initiated by stannous octoate and triphenylphosphine was investigated in a batch apparatus (Haake Rheocord Mixer). Based on the experimental data, a kinetic model is developed, considering a coordination-insertion mechanism. Reactive extrusion ex...
Gespeichert in:
Veröffentlicht in: | Macromolecular symposia. 2010-03, Vol.289 (1), p.108-118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kinetics of L-lactide ring-opening polymerization initiated by stannous octoate and triphenylphosphine was investigated in a batch apparatus (Haake Rheocord Mixer). Based on the experimental data, a kinetic model is developed, considering a coordination-insertion mechanism. Reactive extrusion experiments were further conducted for the same polymerization process, on a co-rotating twin screw extruder. The melted material flow and mixing was described by using the Ludovic® commercial simulator. Based on the developed kinetic model and simulated flow of L-lactide polymerization mixture, a mathematical model of reactive extrusion process is formulated, describing the evolutions of monomer conversion and average molecular weight along the extruder. The model is predicting with a reasonable good accuracy the experimental data. |
---|---|
ISSN: | 1022-1360 1521-3900 |
DOI: | 10.1002/masy.200900012 |