Spin-orbit coupling and phase coherence in InAs nanowires

We investigated the magnetotransport of InAs nanowires grown by selective-area metal-organic vapor phase epitaxy. In the temperature range between 0.5 and 30 K reproducible fluctuations in the conductance upon variation in the magnetic field or the backgate voltage are observed, which are attributed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2010-12, Vol.82 (23), Article 235303
Hauptverfasser: Estévez Hernández, S., Akabori, M., Sladek, K., Volk, Ch, Alagha, S., Hardtdegen, H., Pala, M. G., Demarina, N., Grützmacher, D., Schäpers, Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the magnetotransport of InAs nanowires grown by selective-area metal-organic vapor phase epitaxy. In the temperature range between 0.5 and 30 K reproducible fluctuations in the conductance upon variation in the magnetic field or the backgate voltage are observed, which are attributed to electron interference effects in small disordered conductors. From the correlation field of the magnetoconductance fluctuations the phase-coherence length l(phi) is determined. At the lowest temperatures l(phi) is found to be at least 300 nm while for temperatures exceeding 2 K a monotonous decrease in l(phi) with temperature is observed. A direct observation of the weak antilocalization effect indicating the presence of spin-orbit coupling is masked by the strong magnetoconductance fluctuations. However, by averaging the magnetoconductance over a range of gate voltages a clear peak in the magnetoconductance due to the weak antilocalization effect was resolved. By comparison of the experimental data to simulations based on a recursive two-dimensional Green's-function approach a spin-orbit scattering length of approximately 70 nm was extracted, indicating the presence of strong spin-orbit coupling.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.82.235303