Poly(ethylene glycol) brushes grafted to silicon substrates by click chemistry: influence of PEG chain length, concentration in the grafting solution and reaction time

The grafting of poly(ethylene glycol) (PEG) brushes to silicon substrates by the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition, also coined as click chemistry, was studied in detail. First, the grafting kinetics of an alkyne-functionalized dimethylchlorosilane SAM from a toluene solution or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer chemistry 2011, Vol.2 (2), p.348-354
Hauptverfasser: Ostaci, Roxana-Viorela, Damiron, Denis, Al Akhrass, Samer, Grohens, Yves, Drockenmuller, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The grafting of poly(ethylene glycol) (PEG) brushes to silicon substrates by the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition, also coined as click chemistry, was studied in detail. First, the grafting kinetics of an alkyne-functionalized dimethylchlorosilane SAM from a toluene solution or in the vapor phase was monitored by water contact angle measurements. [small alpha]-Methoxy-[small omega]-azido-PEGs with Mw of 5, 20, and 50 kDa were then grafted to the alkyne functionalized SAMs via click chemistry in THF using Cu(PPh3)3Br/DIPEA as the catalytic system. The influence of polymer concentration in the grafting solution ([capital Phi] = 0.01-50 wt%) and reaction time (t = 0-72 h) on the thickness, morphology and wetting properties of the PEG brushes was investigated by ellipsometry, scanning probe microscopy and water contact angle measurements. PEG brushes up to 6 nm thick with homogeneous surface coverage and morphology as well as surface roughness on a nanometric scale were thus obtained using mild and robust grafting conditions.
ISSN:1759-9954
1759-9962
DOI:10.1039/C0PY00251H