From implicit to recursive equations

The technique of relaxed power series expansion provides an efficient way to solve so called recursive equations of the form F = Φ ( F ) , where the unknown F is a vector of power series, and where the solution can be obtained as the limit of the sequence 0 , Φ ( 0 ) , Φ ( Φ ( 0 ) ) , … . With respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2019-06, Vol.30 (3), p.243-262
1. Verfasser: van der Hoeven, Joris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The technique of relaxed power series expansion provides an efficient way to solve so called recursive equations of the form F = Φ ( F ) , where the unknown F is a vector of power series, and where the solution can be obtained as the limit of the sequence 0 , Φ ( 0 ) , Φ ( Φ ( 0 ) ) , … . With respect to other techniques, such as Newton’s method, two major advantages are its generality and the fact that it takes advantage of possible sparseness of Φ . In this paper, we consider more general implicit equations of the form Φ ( F ) = 0 . Under mild assumptions on such an equation, we will show that it can be rewritten as a recursive equation.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-018-0370-2