Uncalibrated reconstruction: an adaptation to structured light vision
Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical constraints about the environment. Unfortunately, these constraints may be quite difficult to obtain. In this paper, we propose an approach based on structured lighting, which has the ad...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2003-07, Vol.36 (7), p.1631-1644 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical constraints about the environment. Unfortunately, these constraints may be quite difficult to obtain. In this paper, we propose an approach based on structured lighting, which has the advantage of providing geometrical constraints independent of the scene geometry. Moreover, the use of structured light provides a unique solution to the tricky correspondence problem present in stereovision. The projection matrices are first computed by using a canonical representation, and a projective reconstruction is performed. Then, several constraints are generated from the image analysis and the projective reconstruction is upgraded into an Euclidean one—as we will demonstrate, it is assumed that the sensor behaviour is affine without loss of generality so that the constraints generation is simplified. The method provides our sensor with adaptive capabilities and permits to be used in the measurement of moving scenes such as dynamic visual inspection or mobile robot navigation. Experimental results obtained from both simulated and real data are presented. |
---|---|
ISSN: | 0031-3203 1873-5142 |
DOI: | 10.1016/S0031-3203(02)00288-1 |