Specializations of indecomposable polynomials
We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime p for the reduction modulo p of an indecomposable polynomial to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if f (...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2012-11, Vol.139 (3-4), p.391-403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime
p
for the reduction modulo
p
of an indecomposable polynomial
to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if
f
(
t
1
, . . . ,
t
r
,
x
) is an indecomposable polynomial in several variables with coefficients in a field of characteristic
p
= 0 or
p
> deg(
f
), then the one variable specialized polynomial
is indecomposable for all
outside a proper Zariski closed subset. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-011-0520-3 |