Specializations of indecomposable polynomials

We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime p for the reduction modulo p of an indecomposable polynomial to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if f (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2012-11, Vol.139 (3-4), p.391-403
Hauptverfasser: Bodin, Arnaud, Chèze, Guillaume, Dèbes, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime p for the reduction modulo p of an indecomposable polynomial to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if f ( t 1 , . . . , t r , x ) is an indecomposable polynomial in several variables with coefficients in a field of characteristic p  = 0 or p  > deg( f ), then the one variable specialized polynomial is indecomposable for all outside a proper Zariski closed subset.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-011-0520-3