Electropolymerization of pyrrole on oxidizable metal under high frequency ultrasound irradiation. Application of focused beam to a selective masking technique

A novel masking technique against polymer deposition based on High Intensity Focused Ultrasound (HIFU) irradiation was developed for the first time. With this in mind, a variety of background salts were tested. Sodium salicylate was found to be the most effective electrolytic medium for pyrrole sono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2010-12, Vol.55 (28), p.9137-9145
Hauptverfasser: Et Taouil, A., Lallemand, F., Hallez, L., Hihn, J-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel masking technique against polymer deposition based on High Intensity Focused Ultrasound (HIFU) irradiation was developed for the first time. With this in mind, a variety of background salts were tested. Sodium salicylate was found to be the most effective electrolytic medium for pyrrole sonoelectropolymerization on copper as it leads to a very efficient passivating oxide layer preventing copper dissolution while enabling polymer formation independently from sonication. In such a medium, high frequency ultrasound greatly refines surface structure, and a slight increase in doping level is observed. Finally, it was proved that focused ultrasound increases copper dissolution in sodium oxalate electrolyte while preventing polypyrrole deposition. A selected zone on the copper substrate was thus irradiated by the focused ultrasound beam to protect it from polymerization. In a second stage, a self-assembled monolayer was deposited on this polymer-free area to create a surface biphased substrate. This type of masking technique can be proposed as an interesting alternative to lithography as it is easier to carry out and allows chemical waste reduction.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2010.07.083