A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection

This paper presents the optimization of a micro gas preconcentrator based on a micro-channel in porous and non-porous silicon filled with an adequate adsorbent. This micro gas preconcentrator is both applicable in the fields of atmospheric pollution monitoring (Volatil organic compounds—VOCs) and ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2011-03, Vol.688 (2), p.175-182
Hauptverfasser: Camara, E.H.M., Breuil, P., Briand, D., de Rooij, N.F., Pijolat, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the optimization of a micro gas preconcentrator based on a micro-channel in porous and non-porous silicon filled with an adequate adsorbent. This micro gas preconcentrator is both applicable in the fields of atmospheric pollution monitoring (Volatil organic compounds—VOCs) and explosives detection (nitroaromatic compounds). Different designs of micro-devices and adsorbent materials have been investigated since these two parameters are of importance in the performances of the micro-device. The optimization of the device and its operation were driven by its future application in outdoor environments. Parameters such as the preconcentration factor, cycle time and the influence of the humidity were considered along the optimization process. As a result of this study, a preconcentrator with a total cycle time of 10 min and the use of single wall carbon nanotubes (SWCNTs) as adsorbent exhibits a good preconcentration factor for VOCs with a limited influence of the humidity. The benefits of using porous silicon to modify the gas desorption kinetics are also investigated.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2010.12.039